Patents by Inventor Richard Coury

Richard Coury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8740525
    Abstract: A cargo restraint system for securing cargo within a truck bed having fixed anchors includes a plurality of adjustable-length straps attachable to the truck bed, and a cargo net attached to the straps and slidable along at least a portion thereof. Hooks are fixed to the straps for attaching the straps to the truck bed anchors, and each strap includes a cam buckle for selectively adjusting the length of the strap.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 3, 2014
    Assignee: Setwear Products, Inc.
    Inventors: Lance Michael Coury, Steven Brian Weber, Lance Richard Coury
  • Patent number: 6926128
    Abstract: A shock absorber damper assembly is provided that includes a working cylinder filled with fluid. A piston and rod are disposed in the working cylinder and move along an axis to provide dampening during a compression stroke. For a twin tube arrangement, a reservoir surrounds the working cylinder and may include a gas cell to accommodate the volume of the rod. A recoil valve controls flow of the fluid from the working cylinder to the reservoir during a recoil stroke. The recoil valve has an opening force controlling damping during the recoil stroke. A fluid passageway, which may be located in the reservoir, connects the working cylinder and the recoil valve. A check valve is disposed in the fluid passageway and opens to receive the fluid during the compression stroke. The check valve closes during the recoil stroke to retain the fluid against the recoil valve at a pressure and adjust the opening force of the recoil valve.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: August 9, 2005
    Assignee: Arvin Technologies, Inc.
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves
  • Patent number: 6923299
    Abstract: A variable spring member includes a containment housing defining an inner chamber with alternating layers of compressible medium and electro-reactive medium. Adjacent each layer of electro-reactive medium is a coil assembly controlled by a controller. A sealed plate disposed between alternating layers of compressible medium and electro-reactive medium disperses a load exerted on the variable spring member assembly and prevents intermixing of compressible medium with the electro-reactive medium. Actuation of the coil assembly changes physical characteristics and compressibility of the layer of electro-reactive medium to vary spring rate and stiffness.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: August 2, 2005
    Assignee: ArvinMeritor Technology, LLC
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves
  • Publication number: 20040256185
    Abstract: A variable spring member includes a containment housing defining an inner chamber with alternating layers of compressible medium and electro-reactive medium. Adjacent each layer of electro-reactive medium is a coil assembly controlled by a controller. A sealed plate disposed between alternating layers of compressible medium and electro-reactive medium disperses a load exerted on the variable spring member assembly and prevents intermixing of compressible medium with the electro-reactive medium. Actuation of the coil assembly changes physical characteristics and compressibility of the layer of electro-reactive medium to vary spring rate and stiffness.
    Type: Application
    Filed: June 23, 2003
    Publication date: December 23, 2004
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves
  • Publication number: 20040251097
    Abstract: A shock absorber damper assembly is provided that includes a working cylinder filled with fluid. A piston and rod are disposed in the working cylinder and move along an axis to provide dampening during a compression stroke. For a twin tube arrangement, a reservoir surrounds the working cylinder and may include a gas cell to accommodate the volume of the rod. A recoil valve controls flow of the fluid from the working cylinder to the reservoir during a recoil stroke. The recoil valve has an opening force controlling damping during the recoil stroke. A fluid passageway, which may be located in the reservoir, connects the working cylinder and the recoil valve. A check valve is disposed in the fluid passageway and opens to receive the fluid during the compression stroke. The check valve closes during the recoil stroke to retain the fluid against the recoil valve at a pressure and adjust the opening force of the recoil valve.
    Type: Application
    Filed: June 10, 2003
    Publication date: December 16, 2004
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves
  • Publication number: 20040159515
    Abstract: A coil spring over shock absorber assembly includes a dampening mechanism for varying a dampening rate. The coil spring mounted to the outside of the shock absorber includes an adjustable support to change spring preload in order to adjust for vehicle load and maintain vehicle ride height. A load sensor is positioned on one of the coil spring supports and communicates changes in the coil spring preload to a controller. The controller in turn adjusts a dampening mechanism disposed within the shock absorber to optimize the dampening rate of the shock absorber relative to the coil spring preload.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 19, 2004
    Inventors: Stephen H. Bell, James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Nelson C. Goncalves
  • Publication number: 20030192756
    Abstract: An adjustable shock absorber is provided that includes a body defining a cavity. A member such as a piston is disposed in the body and at least partially separates the cavity in two first and second fluid chambers. A port extends through the piston and fluidly connects the first and second chambers during damping. A deflection disc, typically several, are arranged adjacent to the piston and one of the chambers to at least partially obstruct the port. A flange member such as a washer is arranged in proximity to the deflection disc with the deflection disc arranged between the washer and the piston. The deflection disc bends about the washer, which acts as a fulcrum, to unobstruct the port. The washer has a first portion with a first radial width defining a first rate of damping and a second portion with a second radial width different than the first radial width defining a second rate of damping different than the first rate of damping.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves
  • Publication number: 20030192755
    Abstract: A shock absorber is provided that includes a housing having an inner wall defining a working fluid chamber and an outer wall spaced outwardly from the inner wall defining a fluid reservoir. Either a compression head or an inner cylinder head may be arranged at an end of the housing. The head extends radially from a first portion interior of the inner wall to a second portion exterior of the inner wall with the head separating the working fluid chamber and the fluid reservoir. The head includes a passageway extending between the first and second portions fluidly interconnecting the working fluid chamber and the fluid reservoir. A valve is disposed about the inner wall and is arranged in the fluid reservoir. The valve has an annular sealing portion adjacent to the second portion for obstructing fluid flow through the passageway in a closed position and spaced from the second portion in an open position. A toroidal solenoid has a central opening with the inner wall disposed within the central opening.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Inventors: James M. Barbison, Kevin H. Erickson, Arnett R. Weber, Ronald W. Farewell, Richard Coury, Thomas R. King, Stephen H. Bell, Nelson C. Goncalves