Patents by Inventor Richard D. Balazy

Richard D. Balazy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9308584
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: April 12, 2016
    Assignee: MOTT CORPORATION
    Inventors: Derek Burgess, Wayne F. White, Alfred M. Romano, Todd W. Pflugbeil, Richard D. Balazy, Kenneth L. Rubow, John E. Rosenberger
  • Publication number: 20140134036
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Application
    Filed: January 22, 2014
    Publication date: May 15, 2014
    Applicant: MOTT CORPORATION
    Inventors: Derek BURGESS, Wayne F. WHITE, Alfred M. ROMANO, Todd W. PFLUGBEIL, Richard D. BALAZY, Kenneth L. RUBOW, John E. ROSENBERGER
  • Patent number: 8673065
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: March 18, 2014
    Assignee: Mott Corporation
    Inventors: Derek Burgess, Wayne F. White, Alfred M. Romano, Todd W. Pflugbeil, Richard D. Balazy, Kenneth L. Rubow, John E. Rosenberger
  • Publication number: 20120285877
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Application
    Filed: January 12, 2012
    Publication date: November 15, 2012
    Applicant: Mott Corporation
    Inventors: Derek Burgess, Wayne F. White, Alfred M. Romano, Todd W. Pflugbeil, Richard D. Balazy, Kenneth L. Rubow, John E. Rosenberger
  • Patent number: 8097071
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: January 17, 2012
    Assignee: Mott Corporation
    Inventors: Derek Burgess, Wayne F. White, Alfred M. Romano, Todd W. Pflugbeil, Richard D. Balazy, Kenneth L. Rubow, John E. Rosenberger
  • Publication number: 20090165651
    Abstract: Sintered fiber filters are provided that can afford high particle capture efficiency and/or low pressure drop during operation, and are useful in applications such as semiconductor processing. The shape of at least a portion of the individual fibers (e.g., metal fibers) used to make the filter have a three-dimensional aspect, which allows for a low packing density and high porosity filtration media. Certain filters have a cylindrical or tube-like shape with tapered ends of higher density. Methods of making such filters, for example, using axial pressing, are also described.
    Type: Application
    Filed: October 22, 2008
    Publication date: July 2, 2009
    Applicant: MOTT CORPORATION
    Inventors: Derek BURGESS, Wayne F. WHITE, Alfred M. ROMANO, Todd W. PFLUGBEIL, Richard D. BALAZY, Kenneth L. RUBOW, John E. ROSENBERGER
  • Patent number: 6802333
    Abstract: A method and system for controlling the rate of fluid flow. A flow restrictor having known pressure drop and flow rate characteristics provided in a passage through which the fluid, preferably a gas, flows. An upstream pressure sensor determines the pressure of fluid in the flow passage upstream of the flow restrictor. A downstream pressure sensor determines the pressure of fluid in the flow passage downstream of said flow restrictor. A pressure regulator adjusts the pressure of fluid upstream or downstream of the flow restrictor based on the pressure drop across the flow restrictor so that the actual pressure drop across the flow restrictor closely corresponds to the pressure drop associated with a desired rate of fluid flow.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: October 12, 2004
    Assignee: Mott Metallurgical Corporation
    Inventors: Richard D. Balazy, Cathy L. Cowan, Mark R. Eisenmann, Kenneth E. Frink, Edward Kulha
  • Publication number: 20020179150
    Abstract: A method and system for controlling the rate of fluid flow. A flow restrictor having known pressure drop and flow rate characteristics provided in a passage through which the fluid, preferably a gas, flows. An upstream pressure sensor determines the pressure of fluid in the flow passage upstream of the flow restrictor. A downstream pressure sensor determines the pressure of fluid in the flow passage downstream of said flow restrictor. A pressure regulator adjusts the pressure of fluid upstream or downstream of the flow restrictor based on the pressure drop across the flow restrictor so that the actual pressure drop across the flow restrictor closely corresponds to the pressure drop associated with a desired rate of fluid flow.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Applicant: Mott Metallurgical Corporation
    Inventors: Richard D. Balazy, Cathy L. Cowan, Mark R. Eisenmann, Kenneth E. Frink, Edward Kulha
  • Patent number: 6422256
    Abstract: A method and system for controlling the rate of fluid flow. A flow restrictor having known pressure drop and flow rate characteristics provided in a passage through which the fluid, preferably a gas, flows. An upstream pressure sensor determines the pressure of fluid in the flow passage upstream of the flow restrictor. A downstream pressure sensor determines the pressure of fluid in the flow passage downstream of said flow restrictor. A pressure regulator adjusts the pressure of fluid upstream or downstream of the flow restrictor based on the pressure drop across the flow restrictor so that the actual pressure drop across the flow restrictor closely corresponds to the pressure drop associated with a desired rate of fluid flow.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: July 23, 2002
    Assignee: Mott Metallurgical Corporation
    Inventors: Richard D. Balazy, Cathy L. Cowan, Mark R. Eisenmann, Kenneth E. Frink, Edward Kulha
  • Publication number: 20020040733
    Abstract: A method and system for controlling the rate of fluid flow. A flow restrictor having known pressure drop and flow rate characteristics provided in a passage through which the fluid, preferably a gas, flows. An upstream pressure sensor determines the pressure of fluid in the flow passage upstream of the flow restrictor. A downstream pressure sensor determines the pressure of fluid in the flow passage downstream of said flow restrictor. A pressure regulator adjusts the pressure of fluid upstream or downstream of the flow restrictor based on the pressure drop across the flow restrictor so that the actual pressure drop across the flow restrictor closely corresponds to the pressure drop associated with a desired rate of fluid flow.
    Type: Application
    Filed: November 1, 2001
    Publication date: April 11, 2002
    Inventors: Richard D. Balazy, Cathy L. Cowan, Mark R. Eisenmann, Kenneth E. Frink, Edward Kulha
  • Patent number: 6152162
    Abstract: A method and system for controlling the rate of fluid flow. A flow restrictor having known pressure drop and flow rate characteristics provided in a passage through which the fluid, preferably a gas, flows. An upstream pressure sensor determines the pressure of fluid in the flow passage upstream of the flow restrictor. A downstream pressure sensor determines the pressure of fluid in the flow passage downstream of said flow restrictor. A pressure regulator adjusts the pressure of fluid upstream or downstream of the flow restrictor based on the pressure drop across the flow restrictor so that the actual pressure drop across the flow restrictor closely corresponds to the pressure drop associated with a desired rate of fluid flow.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: November 28, 2000
    Assignee: Mott Metallurgical Corporation
    Inventors: Richard D. Balazy, Cathy L. Cowan, Mark R. Eisenmann, Kenneth E. Frink, Edward Kulha
  • Patent number: 5917066
    Abstract: An inline ultra-high efficiency filter comprising a housing having a chamber extending the length thereof, an inlet and an outlet providing flow passages into and from the chamber. Seated in the chamber is a porous sintered metal filter element having a tubular body open at its end adjacent the inlet and an end wall at its other end adjacent the outlet, and the filter element provides an internal flow passage extending therein from the inlet to the end wall. A sealing weldment provides an air tight seal between the periphery of the filter element and the housing adjacent the inlet. The filter element is spaced from the wall of the chamber to provide a plenum space thereabout, and a gas stream entering the inlet end of the filter passes into the internal flow passage of the filter element and outwardly of the body of the filter element into the plenum space and thence outwardly of the outlet end of the filter.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: June 29, 1999
    Assignee: Mott Metallurgical Corporation
    Inventors: Mark R. Eisenmann, Richard D. Balazy