Patents by Inventor Richard D. Jinkins

Richard D. Jinkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10955548
    Abstract: A weather radar system can be used as an enhanced vision sensor for providing an image on an electronic display during aircraft surface operations. The weather radar sensed image is representative of the external surroundings of the airport surface environment associated with radar returns received by the weather radar system. The radar returns are processed as a collection of radar measurements to determine a high resolution angle and range to a target, using beam sharpening techniques. When the radar image is combined with an image generated from an airport surface database, the combination or comparison of the two independently created images can be used to confirm the integrity of the positioning and attitude source along with the accuracy of the airport surface database.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 23, 2021
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 10705201
    Abstract: An enhanced vision method or a weather radar system can be used with an aircraft and includes an antenna and a control circuit. The control circuit is configured to provide radar beams via the antenna toward external surroundings and is configured to receive radar returns. The control circuit is configured to process a collection of radar measurements from the radar returns, wherein each of the radar measurements is associated with a location determined using an antenna position, an antenna attitude, a beam sharpening angle, and a range. The radar measurements are processed to determine power density per grid cell associated with the power and location of the radar measurements, and the power density per grid cell is used to provide an image associated with the power and location of the radar measurements.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: July 7, 2020
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell
  • Patent number: 10564256
    Abstract: A radar system, such as a weather radar system, includes a radar antenna and a processor. The processor is configured to cause a first radar beam to be provided using a first portion of the radar antenna. The processor is configured to cause a second radar beam to be provided using a phase adjusted portion of the antenna and a remaining portion of the radar antenna. A radar method and system can allow multiple low-loss overlapping radar beams to be rapidly generated to support a sequential lobbing process which may be used to generate intra-beam target angle estimates. The production of these overlapping beams does not require mechanical antenna movement but beam selection is controlled by a simple electronic switch in some embodiments.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 18, 2020
    Assignee: ROCKWELL COLLINS, INC.
    Inventors: James B. West, Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Robert D. Pond
  • Patent number: 10353068
    Abstract: A weather radar system can be used as an airborne sensor for providing an image on an electronic display during low visibility offshore IFR operations (e.g. for a helicopter approach to an offshore platform, such as, a petroleum rig or other structure). The weather radar sensed image is representative of the external surroundings of the maritime environment associated with radar returns received by the weather radar system. Beam sharpening technology produces higher angular resolution of the sensed objects in the radar image which reduces the interpreted azimuth errors from the sensed radar image. Accordingly, beam sharpening technology advantageously allows object isolation of closely clustered offshore platforms and nearby objects. With operational credit provided to these capabilities, the minimal distance for obtaining visual reference with the target platform could be reduced, increasing the success rate of completing offshore operations in low visibility IFR conditions.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: July 16, 2019
    Assignee: ROCKWELL COLLINS, INC.
    Inventors: Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 10228460
    Abstract: A weather radar system can be used as an enhanced vision sensor for providing an image on an electronic display during aircraft surface operations. The weather radar sensed image is representative of the external surroundings of the airport surface environment associated with radar returns received by the weather radar system. The radar returns are processed as a collection of radar measurements to determine a high resolution angle and range to a target, using beam sharpening techniques. When the radar image is combined with an image generated from an airport surface database, the combination or comparison of the two independently created images can be used to confirm the integrity of the positioning and attitude source along with the accuracy of the airport surface database.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 12, 2019
    Assignee: ROCKWELL COLLINS, INC.
    Inventors: Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 9939526
    Abstract: An enhanced vision method uses or an enhanced vision system includes an onboard weather radar system configured to improve angular resolution and/or resolution in range. The onboard weather radar system generates image data representative of the external scene topography of a runway environment associated with radar returns received by the onboard weather radar system. The radar returns are in an X-band or a C-band. The enhanced vision system also includes a display in communication with the onboard weather radar system and is configured to display an image associated with the image data that is generated by the onboard weather radar system. The enhanced vision system can also be used as an enhanced flight vision system.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: April 10, 2018
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell, Sergey B. Shishlov
  • Publication number: 20170285137
    Abstract: A radar system, such as a weather radar system, includes a radar antenna and a processor. The processor is configured to cause a first radar beam to be provided using a first portion of the radar antenna. The processor is configured to cause a second radar beam to be provided using a phase adjusted portion of the antenna and a remaining portion of the radar antenna. A radar method and system can allow multiple low-loss overlapping radar beams to be rapidly generated to support a sequential lobing process which may be used to generate intra-beam target angle estimates. The production of these overlapping beams does not require mechanical antenna movement but beam selection is controlled by a simple electronic switch in some embodiments.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 5, 2017
    Applicant: Rockwell Collins, Inc.
    Inventors: James B. West, Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Robert D. Pond
  • Patent number: 9733349
    Abstract: An apparatus is for use with an aircraft radar system having a radar antenna. The apparatus comprises processing electronics are configured to receive radar data associated with the radar antenna of the system. The processing electronics are also configured to detect periodic data associated with runway lights in the radar data.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 15, 2017
    Assignee: Rockwell Collins, Inc.
    Inventors: Robert B. Wood, Carlo L. Tiana, Nathaniel S. Kowash, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 9562788
    Abstract: An airborne navigation system that uses Doppler information from an on-board weather radar to improve the system's accuracy and/or fault tolerance. The system can determine a drift angle and ground speed from Doppler information associated with radar returns from the Earth's surface. Alternatively, the system can be configured to determine heading angle using the drift angle and a track angle received from another sensor.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 7, 2017
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Vladislav Gavrilets, Richard M. Rademaker, Daniel L. Woodell, Damien B. Jourdan, James H. Doty
  • Patent number: 9459348
    Abstract: A system and method relates to a weather detection system using millimeter wave radar data. Processing electronics receives millimeter wave radar (MMWR) data and senses a presence of weather spatial extent using return strength data associated with the MMWR data. The processing electronics uses spectral width data associated with the MMWR data to assign a level to the weather in the spatial extent.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 4, 2016
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell, Jeffery A. Finley
  • Patent number: 9384586
    Abstract: An image processing system for enhanced flight vision includes a processor and memory coupled to the processor. The memory contains program instructions that, when executed, cause the processor to receive radar returns data for a runway structure, generate a three-dimensional model representative of the runway structure based on the radar returns data, generate a two-dimensional image of the runway structure from the three-dimensional model, and generate an aircraft situation display image representative of the position of the runway structure with respect to an aircraft based on the two-dimensional image.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: July 5, 2016
    Assignee: Rockwell Collins, Inc.
    Inventors: Patrick D. McCusker, Richard D. Jinkins, Richard M. Rademaker
  • Publication number: 20160131739
    Abstract: An enhanced vision method uses or an enhanced vision system includes an onboard weather radar system configured to improve angular resolution and/or resolution in range. The onboard weather radar system generates image data representative of the external scene topography of a runway environment associated with radar returns received by the onboard weather radar system. The radar returns are in an X-band or a C-band. The enhanced vision system also includes a display in communication with the onboard weather radar system and is configured to display an image associated with the image data that is generated by the onboard weather radar system. The enhanced vision system can also be used as an enhanced flight vision system.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Applicant: ROCKWELL COLLINS, INC.
    Inventors: Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell, Sergey B. Shishlov
  • Patent number: 9024805
    Abstract: Methods and systems of determining the altitude of an aircraft are provided. The method includes receiving data associated with aircraft position, a position of a first point and a second point on the runway, and an altitude of the first point and the second point, radar returns from the runway. The method includes determining a first range and second range between the aircraft, and the first point and the second point. The method includes determining a first angle and a second angle between the first point and second point, and the aircraft. The method includes determining a corrected angle. The method includes determining the altitude of the aircraft based on the corrected angle, the runway altitude of at least one of the first point and the second point, and at least one of the first range and the second range.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: May 5, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Daniel L. Woodell, Richard M. Rademaker
  • Patent number: 8977491
    Abstract: An apparatus for use with a weather radar system having a radar antenna, the apparatus for mounting to an aircraft and for verifying terrain features shown on an electronic display, the terrain features based on terrain data from a terrain database. The apparatus includes processing electronics configured to receive radar return data from the weather radar system and configured to correlate the radar return data with the terrain data. The processing electronics using the correlation to provide an indication as to whether the terrain features displayed on the electronic display are correct or incorrect.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: March 10, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: Patrick D. McCusker, Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 8909471
    Abstract: A position determining voting system that uses Doppler information from an on-board weather radar to improve the system's accuracy and/or fault tolerance includes a comparison function and an error integration function. The comparison function is used to monitor the independent position sources for correct operation, comparing and identifying a position source that should not be used based on its relative error compared with the other position sources and their characteristics. The integration function provides corrections to relative position sources by integrating the data from multiple absolute position sources when they are mutually consistent.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 9, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell, James H. Doty, Keith L. Kerley, James Alva Young, Jr., Shih-Yih Young
  • Patent number: 8773299
    Abstract: An exemplary embodiment relates to an aircraft system for detecting wires. The system includes a processor configured to actively sense a presence of a first object and a second object. The processor determines a location of the first object and the second object. The processor determines a potential location of a wire between the first object and the second object. The processor actively senses the wire by providing electromagnetic energy to the potential location.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 8, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 8755954
    Abstract: A system and methods for generating alerts in a terrain awareness and warning system (“TAWS”) in an aircraft, using data acquired from a forward-looking radar The system comprises a forward-looking imaging device, an airport database, a navigation system, a forward-looking terrain alert (“FLTA”) processor, and a crew alerting system. The FLTA processor determines a measured clearance altitude of a highest cell within an area and compares it with a required minimum clearance altitude; if the measured altitude is equal or less than the required altitude, the crew is alerted. Alternatively, a terrain database may be used. with the FLTA processor for determining if the aircraft descends below the minimum operating altitude or is predicted to do so and then generating an alert. A method is disclosed for generating TAWS alerts using elevation angle measured by the forward-looking radar and terrain data retrieved from a terrain database.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 17, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Patrick D. McCusker, Joel M. Wichgers, Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell
  • Patent number: 8698669
    Abstract: Another embodiment of the disclosure relates to an altitude system for an aircraft. The aircraft radar system includes a processor configured to determine an altitude of the aircraft using runway position information, and an angle to the runway associated with a radar beam to the runway. The angle to the runway is being determined using a pointing angle of the antenna adjusted with an angular offset. The angular offset is determined from phase processing.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 15, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8643533
    Abstract: A weather radar system improves electronics for receiving radar returns. The weather radar system determines an altitude above ground level using return data derived from the weather radar returns. The weather radar system can utilize movement data related to movement of the aircraft to calculate the altitude. In addition, the weather radar system can utilize previous calculations of the altitude to determine the current altitude underneath the aircraft. The weather radar system can reduce the need for a radio altimeter.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 4, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 8615337
    Abstract: The present examples provide circuits, systems, processes, and the like for providing precision course guidance, typically for improved positive course guidance below published minimum descent altitude or decision altitude, including just in time calculations of obstacle free flight paths. The calculated flight path may be presented in the context of a synthetic scene of the environment surrounding the aircraft. To provide precision course guidance, exemplary avionics systems, processes and the like, as described below may be utilized.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 24, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Patrick D. McCusker, Sarah Barber, Felix B. Turcios, Douglas A. Bell, Richard D. Jinkins, Timothy J. Etherington, Michael J. Krenz, Charles B. Dirks