Patents by Inventor Richard D. Lenz

Richard D. Lenz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190063828
    Abstract: An annular divided wall column for the cryogenic rectification of air or constituents of air is provided. The annular divided wall column includes a first annular column wall and a second annular column wall disposed within the first annular column wall and radially spaced therefrom to define an annulus column region as the space between the first annular column wall and the second annular column wall. An interior core column region is also defined by the interior space of the second annular column wall. The present annular divided wall column further includes a plurality of packing elements, plurality of trays or a heat exchange device disposed within the interior core column region; and a plurality of packing elements disposed within the annulus column region.
    Type: Application
    Filed: July 23, 2018
    Publication date: February 28, 2019
    Inventors: Kirk F. Larson, Paul W. Belanger, Steven C. Brown, John P. Ricotta, Guang X. Chen, Richard D. Lenz
  • Patent number: 8974576
    Abstract: The disclosure relates to a continuous or semi-continuous, cyclic, countercurrent sorption-desorption method for enhanced control, separation, and/or purification of CO2 gas from one or more sources of a mixture of gases through integrated use of solid monolithic sorbents having a sorption selectivity for the CO2 gas, wherein liquid phase water is added to increase the heat capacity of the mixed gas source(s) in order to achieve a thermal wave moving through the thickness of the sorbent material faster than the CO2 sorption wave.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: March 10, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Gupta, Hans Thomann, Richard D. Lenz, Simon C. Weston
  • Publication number: 20140175336
    Abstract: The disclosure relates to a continuous or semi-continuous, cyclic, countercurrent sorption-desorption method for enhanced control, separation, and/or purification of CO2 from one or more sources of a mixture of gases (and/or carbonaceous liquids that have sufficient vapor pressure) through integrated use of solid monolithic sorbents having a selectivity for sorption of the CO2.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Gupta, Hans Thomann, Richard D. Lenz, Hugo S. Caram
  • Publication number: 20140174291
    Abstract: The disclosure relates to a continuous or semi-continuous, cyclic, countercurrent sorption-desorption method for enhanced control, separation, and/or purification of CO2 gas from one or more sources of a mixture of gases through integrated use of solid monolithic sorbents having a sorption selectivity for the CO2 gas, wherein liquid phase water is added to increase the heat capacity of the mixed gas source(s) in order to achieve a thermal wave moving through the thickness of the sorbent material faster than the CO2 sorption wave.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Gupta, Hans Thomann, Richard D. Lenz, Simon C. Weston
  • Publication number: 20110217218
    Abstract: A method and system for the selective removal of CO2 and/or H2S from a gaseous stream containing one or more acid gases. In particular, a system and method for separating CO2 and/or H2S from a gas mixture containing an acid gas using an absorbent solution and one or more ejector venturi nozzles in flow communication with one or more absorbent contactors. The method involves contacting a gas mixture containing at least one acid gas with the absorbent solution under conditions sufficient to cause absorption of at least a portion of said acid gas. The absorbent contactors operate in co-current flow and are arranged in a counter-current configuration to increase the driving force for mass transfer. Monoliths can be used that operate in a Taylor flow or slug flow regime. The absorbent solution is treated under conditions sufficient to cause desorption of at least a portion of the acid gas.
    Type: Application
    Filed: February 18, 2011
    Publication date: September 8, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Gupta, Krishnan Sankaranarayanan, Himanshu Gupta, Benjamin A. McCool, Robert B. Fedich, Richard D. Lenz