Patents by Inventor Richard D. McCullough

Richard D. McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11118078
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: September 14, 2021
    Assignee: Liquid X Printed Metals, Inc.
    Inventors: Richard D McCullough, John Belot, Rebecca Potash
  • Publication number: 20200362188
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: Liquid X Printed Metals, Inc.
    Inventors: Richard D McCullough, John Belot, Rebecca Potash
  • Patent number: 10738211
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 11, 2020
    Assignee: Liquid X Printed Metals, Inc.
    Inventors: Richard D. McCullough, John Belot, Rebecca Potash
  • Publication number: 20180208790
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 26, 2018
    Applicant: LIQUID X PRINTED METALS, INC.
    Inventors: Richard D. McCullough, Rebecca Potash
  • Patent number: 9920212
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 20, 2018
    Assignee: Liquid X Printed Metals, Inc.
    Inventors: Richard D. McCullough, John Belot, Rebecca Potash
  • Patent number: 9487669
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal form elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: November 8, 2016
    Assignee: LIQUID X PRINTED METALS, INC.
    Inventors: Richard D. McCullough, John Belot, Rebecca Potash
  • Publication number: 20160264802
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal become elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Applicant: LIQUID X PRINTED METALS, INC.
    Inventors: Richard D. McCullough, John Belot, Rebecca Potash
  • Patent number: 8754175
    Abstract: Novel polymer compositions which provide controlled end-group functionalization for polythiophenes including regioregular polythiophenes including alkenyl and alkynyl functionalization. Monocapped polymers are formed and can be converted to block copolymers. Conditions and reagents can be selected to provide more monocapping than dicapping of the polymer. Devices, films, and blends can be prepared.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: June 17, 2014
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Genevieve Sauve, Mihaela Iovu, Malika Jeffries-El
  • Publication number: 20130236656
    Abstract: Metal complexes adapted to form metallic conductive films upon deposition and treatment. The complexes can have a high concentration of metal and can be soluble in polar protic solvent including ethanol and water. The metal complex can be a covalent complex and can comprise a first and second ligand. Low temperature treatment can be used to convert the complex to a metal. The metallic conductive film can have low resistivity and work function close to pure metal. Coinage metals can be used (e.g., Ag). The ligands can be dative bonding ligands including amines and carboxylate ligands. The ligands can be adapted to volatilize well. High yields of metal can be achieve with high conductivity.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 12, 2013
    Applicant: Liquid X Printed Metals, Inc.
    Inventors: Richard D. MCCULLOUGH, John BELOT, Rebecca POTASH, Elizabeth SEFTON, Christiana COX
  • Publication number: 20120304889
    Abstract: Low temperature processes for converting mixtures of metal inks into alloys. The alloys can be dealloyed by etching. A method comprising: depositing at least one precursor composition on at least one substrate to form at least one deposited structure, wherein the precursor composition comprises at least two metal complexes, including at least one first metal complex comprising at least one first metal and at least one second metal complex different from the first metal complex and comprising at least one second metal different from the first metal, treating the deposited structure so that the first metal and the second metal form elemental forms of the first metal and the second metal in a treated structure. Further, one can remove at least some of the first metal to leave a nanoporous material comprising at least the second metal. Precursor compositions can be formulated to be homogeneous compositions.
    Type: Application
    Filed: May 4, 2012
    Publication date: December 6, 2012
    Inventors: Richard D. MCCULLOUGH, John BELOT, Rebecca POTASH
  • Patent number: 8288508
    Abstract: Universal Grignard Metathesis (GRIM) reactions which provide access to conjugated polymers by GRIM methods. A method comprising: providing an unsaturated ring compound comprising at least two halogen ring substituents, providing an organomagnesium reagent comprising an organomagnesium component and a metal activation agent, combining the unsaturated ring compound with the reagent to form a second compound by metal-halogen exchange, wherein the metal activation agent activates the metal-halogen exchange, coupling the second compound to itself in an oligomerization or polymerization reaction. Metal activation agent can be lithium chloride. The process is commercially attractive and can be executed in good yields. Polyfluorenes, polypyrroles, and polythiophenes can be prepared for use in OLED, PLED, photovoltaic, transistor, antistatic coatings, and sensor applications.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 16, 2012
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Mihaela C. Iovu, Itaru Osaka
  • Patent number: 8227566
    Abstract: The present invention relates to polythiophenes, particularly regioregular head-to-tail poly(3-alkylthiophenes) (HT-PATs), block copolymers made therefrom, and their methods of formation. The present invention provides HT-PATs with well-defined, specific end-groups, functionalization of the defined HT-PATs, and incorporation of end group functionalized HT-PATs into block copolymers with structural polymers. The intrinsically conductive diblock and triblock copolymers, formed from the HT-PATs, have excellent conductivity and low polydispersities that are useful in a number of applications. The block copolymers of the present invention have been found to exhibit conductivities that range from a low of 10?8 S/cm for certain applications to as high as several hundred S/cm or more.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 24, 2012
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Jinsong Liu, Paul C. Ewbank, Elena E. Sheina
  • Publication number: 20110111138
    Abstract: Metal complexes adapted to form conductive metal films and lines upon deposition and treatment. The metal complex can be a covalent complex and can comprise a first and second ligand. Low temperature treatment can be used to convert the complex to a metal. The metal films and lines can have low resistivity and work function similar to pure metal. Coinage metals can be used (e.g., Ag, Au, Cu). The ligands can be dative bonding ligands including amines, unsymmetrical amines, and carboxylate ligands. Sulfur complexes can be used. Carboxylate ligands can be used. The complexes can have a high concentration of metal and can be soluble in aromatic hydrocarbon solvent. The ligands can be adapted to volatilize well. Inkjet printing can be carried out. High yields of metal can be achieve with high conductivity.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Inventors: Richard D. McCullough, John A. Belot, Anna Javier, Rebecca Potash
  • Patent number: 7834106
    Abstract: Regioregular poly(3-alkylthiophenes) and other polythiophenes can be prepared by living polymerization which have good solubility, processability and environmental stability. The polymerization method can afford regioregular poly(3-alkylthiophenes) in high yields. Kinetic study of polymerization revealed the living character of this process. The molecular weight of poly(3-alkylthiophenes) is a function of the molar ratio of the monomer to nickel initiator, and conducting polymers with relatively narrow molecular weight distribution (PDI<1.5) are now readily available. Sequential monomer addition resulted in new block copolymers containing different poly(3-alkylthiophene) segments, which further confirms the “livingness” of this system. Other synthetic methods can be used as well to conduct living polymerization. Blends and electronic devices can be prepared.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: November 16, 2010
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Elena E. Sheina, Mihaela C. Iovu
  • Publication number: 20100117030
    Abstract: Novel polymer compositions which provide controlled end-group functionalization for polythiophenes including regioregular polythiophenes including alkenyl and alkynyl functionalization. Monocapped polymers are formed and can be converted to block copolymers. Conditions and reagents can be selected to provide more monocapping than dicapping of the polymer. Devices, films, and blends can be prepared.
    Type: Application
    Filed: March 15, 2006
    Publication date: May 13, 2010
    Inventors: Richard D. McCullough, Genevieve Sauve, Mihaela Iovu, Malika Jeffries-El
  • Patent number: 7671173
    Abstract: Metal complexing agents are used to purify polymers including conducting polymers to provide very low metal content. The process comprises precipitating the polymer in solution into a solvent system comprising the metal complexing agent. Very low levels including undetectable levels of metals such as nickel and magnesium can be achieved. High purity polymers are used in electronics and photovoltaic applications.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: March 2, 2010
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Mihaela C. Iovu
  • Publication number: 20090043052
    Abstract: Regioregular poly(3-alkylthiophenes) and other polythiophenes can be prepared by living polymerization which have good solubility, processability and environmental stability. The polymerization method can afford regioregular poly(3-alkylthiophenes) in high yields. Kinetic study of polymerization revealed the living character of this process. The molecular weight of poly(3-alkylthiophenes) is a function of the molar ratio of the monomer to nickel initiator, and conducting polymers with relatively narrow molecular weight distribution (PDI<1.5) are now readily available. Sequential monomer addition resulted in new block copolymers containing different poly(3-alkylthiophene) segments, which further confirms the “livingness” of this system. Other synthetic methods can be used as well to conduct living polymerization. Blends and electronic devices can be prepared.
    Type: Application
    Filed: October 13, 2008
    Publication date: February 12, 2009
    Inventors: Richard D. McCullough, Elena E. Sheina, Mihaela C. Iovu
  • Publication number: 20080319131
    Abstract: Electrically conductive polymers including block copolymers, polythiophene copolymers, and regioregular polythiophene copolymers, prepared by controlled radical polymerization including RAFT and NMP polymerization methods. Polymers having low metal content can be prepared. Method of synthesizing polythiophene polymers and copolymers using RAFT and NMP polymerization are also provided. Regioregular polythiophenes are preferred. Blends with polythiophenes and non-conducting polymers can be prepared. Applications include PLEDs, sensors, and optoelectronics.
    Type: Application
    Filed: August 25, 2006
    Publication date: December 25, 2008
    Inventors: Richard D. McCullough, Mihaela C. Iovu
  • Patent number: RE40813
    Abstract: The present invention relates to polythiophenes, particularly regioregular head-to-tail poly(3-alkylthiophenes) (HT-PATs), block copolymers made therefrom, and their methods of formation. The present invention provides HT-PATs with well-defined, specific end-groups, functionalization of the defined HT-PATs, and incorporation of end group functionalized HT-PATs into block copolymers with structural polymers. The intrinsically conductive diblock and triblock copolymers, formed from the HT-PATs, have excellent conductivity and low polydispersities that are useful in a number of applications. The block copolymers of the present invention have been found to exhibit conductivities that range from a low of 10?8 S/cm for certain applications to as high as several hundred S/cm or more.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: June 30, 2009
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Jinsong Liu, Paul C. Ewbank, Elena E. Sheina
  • Patent number: RE41587
    Abstract: The present invention relates to polythiophenes, particularly regioregular head-to-tail poly(3-alkylthiophenes) (HT-PATs), block copolymers made therefrom, and their methods of formation. The present invention provides HT-PATs with well-defined, specific end-groups, functionalization of the defined HT-PATs, and incorporation of end group functionalized HT-PATs into block copolymers with structural polymers. The intrinsically conductive diblock and triblock copolymers, formed from the HT-PATs, have excellent conductivity and low polydispersities that are useful in a number of applications. The block copolymers of the present invention have been found to exhibit conductivities that range from a low of 10?8 S/cm for certain applications to as high as several hundred S/cm or more.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: August 24, 2010
    Assignee: Carnegie Mellon University
    Inventors: Richard D. McCullough, Jinsong Liu, Paul C. Ewbank, Elena E. Sheina