Patents by Inventor Richard E. Lyon

Richard E. Lyon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11579103
    Abstract: Embodiments described herein provide for the flameless premixed combustion of the pyrolysis gases of a milligram-sized sample of solid material in a microscale fire calorimeter (MFC) at high temperatures of combustion and under precisely controlled fuel-to-oxygen ratios. The microscale fire calorimeter (MFC) device and techniques set out herein provide for the generation of fuel gases from solids and the mixing of those fuel gases with oxygen under controlled conditions to obtain precise fuel/oxygen ratios during combustion. Combustion is conducted under flameless, premixed conditions in a rapid test that can generate soot and other products of incomplete combustion, which may then be analyzed to determine their type and nature. This allows for microscale, accurate, and convenient techniques for the generation and determination of the type and nature of combustion species produced over the full range of fire stages from early stage (over-ventilated) fires to late-stage (under-ventilated/high-toxicity) fires.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: February 14, 2023
    Assignee: The United States of America, as represented by the Administrator of the Federal Aviation Administration
    Inventors: Richard E. Lyon, Louise Speitel, Richard N. Walters
  • Publication number: 20200340935
    Abstract: Embodiments described herein provide for the flameless premixed combustion of the pyrolysis gases of a milligram-sized sample of solid material in a microscale fire calorimeter (MFC) at high temperatures of combustion and under precisely controlled fuel-to-oxygen ratios. The microscale fire calorimeter (MFC) device and techniques set out herein provide for the generation of fuel gases from solids and the mixing of those fuel gases with oxygen under controlled conditions to obtain precise fuel/oxygen ratios during combustion. Combustion is conducted under flameless, premixed conditions in a rapid test that can generate soot and other products of incomplete combustion, which may then be analyzed to determine their type and nature. This allows for microscale, accurate, and convenient techniques for the generation and determination of the type and nature of combustion species produced over the full range of fire stages from early stage (over-ventilated) fires to late-stage (under-ventilated/high-toxicity) fires.
    Type: Application
    Filed: April 6, 2020
    Publication date: October 29, 2020
    Applicant: The United States of America, as represented by the administrator of the Federal Aviation Administra
    Inventors: Richard E. Lyon, Louise Speitel, Richard N. Walters
  • Patent number: 7018578
    Abstract: Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: March 28, 2006
    Assignee: The Regents of the University of California
    Inventors: Steven J. Deteresa, Richard E. Lyon, Scott E. Groves
  • Patent number: 6812834
    Abstract: A reference sample for testing fire detectors and a method of testing utilizing the reference samples. The reference sample comprises a fused mixture of pellets of the plastics usually found in aircraft cargo holds, with a heating element embedded in the sample. The pellets are in a plurality of layers with the composition of each layer being homogeneous but the thicknesses and porosities of the layers differing from each other. When the heating element is energized the layers of pellets, which have previously been fused into porous masses, begin to smolder, thereby generating a smoky atmosphere that as nearly as possible simulates the atmosphere in an aircraft cargo hold when there is a fire in the hold. In addition, a flammable liquid can be poured onto the sample and ignited, simultaneously with the energization of the heating element, by a separate ignition source to provide a flaming fire atmosphere.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: November 2, 2004
    Assignee: The United States of America as represented by the Secretary of Transportation
    Inventors: Richard E. Lyon, David R. Blake
  • Publication number: 20030131649
    Abstract: A reference sample for testing fire detectors and a method of testing utilizing the reference samples. The reference sample comprises a fused mixture of pellets of the plastics usually found in aircraft cargo holds, with a heating element embedded in the sample. The pellets are in a plurality of layers with the composition of each layer being homogeneous but the thicknesses and porosities of the layers differing from each other. When the heating element is energized the layers of pellets, which have previously been fused into porous masses, begin to smolder, thereby generating a smoky atmosphere that as nearly as possible simulates the atmosphere in an aircraft cargo hold when there is a fire in the hold. In addition, a flammable liquid can be poured onto the sample and ignited, simultaneously with the energization of the heating element, by a separate ignition source to provide a flaming fire atmosphere.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Inventors: Richard E. Lyon, David R. Blake
  • Patent number: 6592979
    Abstract: Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: July 15, 2003
    Assignee: The Regents of the University of California
    Inventors: Steven J. Deteresa, Richard E. Lyon, Scott E. Groves
  • Publication number: 20030062647
    Abstract: Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 3, 2003
    Applicant: The Regents of the University of California
    Inventors: Steven J. Deteresa, Richard E. Lyon, Scott E. Groves
  • Patent number: 6464391
    Abstract: A calorimeter that measures heat release rates of very small samples (on the order of one to 10 milligrams) without the need to separately and simultaneously measure the mass loss rate of the sample and the heat of combustion of the fuel gases produced during the fuel generation process. The sample is thermally decomposed in a small volume pyrolysis chamber. The resulting fuel gases are immedediately swept by an inert gas stream from the pyrolysis chamber into a combustion furnace in a plug-like flow. This plug flow substantially synchronizes the emerging fuel gases with the mass loss rate of the sample. Oxygen is metered into the fuel gas stream just before it enters the combustion furnace where the fuel gases are completely oxidized. The effluent from the furnace is analyzed to determine the amount of oxygen consumed per unit time and the heat release rate is computed without the need to separately measure the mass loss rate of the sample.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: October 15, 2002
    Assignee: The United States of America as represented by the Secretary of Transportation
    Inventor: Richard E. Lyon
  • Publication number: 20020080849
    Abstract: A calorimeter that measures heat release rates of very small samples (on the order of one to 10 milligrams) without the need to separately and simultaneously measure the mass loss rate of the sample and the heat of combustion of the fuel gases produced during the fuel generation process. The sample is thermally decomposed in a small volume pyrolysis chamber. The resulting fuel gases are immediately swept by an inert gas stream from the pyrolysis chamber into a combustion furnace in a plug-like flow. This plug flow substantially synchronizes the emerging fuel gases with the mass loss rate of the sample. Oxygen is metered into the fuel gas stream just before it enters the combustion furnace where the fuel gases are completely oxidized.
    Type: Application
    Filed: December 22, 2000
    Publication date: June 27, 2002
    Inventor: Richard E. Lyon
  • Patent number: 5981290
    Abstract: A calorimeter for measuring flammability parameters of materials using only milligram sample quantities. The thermochemical and thermophysical processes associated with the flaming combustion of solids are reproduced in the device through rapid anaerobic pyrolysis in a thermogravimetric analyzer. Volatile anaerobic thermal decomposition products are swept from the pyrolysis chamber by an inert gas and combined with excess oxygen in a combustion chamber maintained at several hundred degrees Centigrade to simulate the combustion reactions which occur in a well ventilated diffusion flame. Mass loss is measured continuously during the process and heat release rate is calculated from the oxygen consumed from the gas stream.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: November 9, 1999
    Assignee: The United States of America as represented by the Secretary of Transportation
    Inventors: Richard E. Lyon, Richard N. Walters
  • Patent number: 4849036
    Abstract: Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.
    Type: Grant
    Filed: November 2, 1987
    Date of Patent: July 18, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Howard T. Powell, Michael O. Riley, Charles R. Wolfe, Richard E. Lyon, John H. Campbell, Edward S. Jessop, James E. Murray
  • Patent number: 4761078
    Abstract: A deformation calorimeter that serves to deform a sample material whose temperature changes as a function of the deformation. The temperature change causes heat to flow into the material or out, depending on the character of the deformation, to cause a pressure change in a gas in and around the material. An analyzing scheme is employed to relate the pressure change to the amount of heat evolved during sample deformation.
    Type: Grant
    Filed: May 14, 1984
    Date of Patent: August 2, 1988
    Inventors: Richard J. Farris, Richard E. Lyon