Patents by Inventor Richard E. Muller

Richard E. Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10384810
    Abstract: Micro-emitter arrays and methods of microfabricating such emitter arrays are provided. The microfabricated emitter arrays incorporate a plurality of emitters with heights greater than 280 microns with uniformity of +/?10 microns arranged on a supporting silicon substrate, each emitter comprising an elongated body extending from the top surface of the substrate and incorporating at least one emitter tip on the distal end of the elongated body thereof. The emitters may be disposed on the substrate in an ordered array in an X by Y grid pattern, wherein X and Y can be any number greater than zero. The micro-emitter arrays may utilize a LMIS propellant source including, for example, gallium, indium, bismuth, or tin. The substrate may incorporate at least one through-via providing a fluid pathway for the LMIS propellant to flow from a propellant reservoir beneath the substrate to the top substrate surface whereupon the micro-emitter array is disposed.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: August 20, 2019
    Assignee: California Institute of Technology
    Inventors: Cecile Jung-Kubiak, Colleen M. Marrese-Reading, Victor E. White, Daniel W. Wilson, Matthew R. Dickie, Karl Y. Yee, Richard E. Muller, James E. Polk, John R. Anderson, Nima Rouhi, Frank Greer
  • Publication number: 20180201395
    Abstract: Micro-emitter arrays and methods of microfabricating such emitter arrays are provided. The microfabricated emitter arrays incorporate a plurality of emitters with heights greater than 280 microns with uniformity of +/?10 microns arranged on a supporting silicon substrate, each emitter comprising an elongated body extending from the top surface of the substrate and incorporating at least one emitter tip on the distal end of the elongated body thereof. The emitters may be disposed on the substrate in an ordered array in an X by Y grid pattern, wherein X and Y can be any number greater than zero. The micro-emitter arrays may utilize a LMIS propellant source including, for example, gallium, indium, bismuth, or tin. The substrate may incorporate at least one through-via providing a fluid pathway for the LMIS propellant to flow from a propellant reservoir beneath the substrate to the top substrate surface whereupon the micro-emitter array is disposed.
    Type: Application
    Filed: July 15, 2015
    Publication date: July 19, 2018
    Applicant: California Institute of Technology
    Inventors: Cecile Jung-Kubiak, Colleen M. Marrese-Reading, Victor E. White, Daniel W. Wilson, Matthew R. Dickie, Karl Y. Yee, Richard E. Muller, James E. Polk, John R. Anderson, Nima Rouhi, Frank Greer
  • Patent number: 6717172
    Abstract: A diffractive optic sheer stress sensor operates by forming diverging fringes over a linear area of measurement. A diode laser focuses light onto a diffractive lens which focuses the light to respective slits. The slits form diverging fringes, and scattered light from the fringes is collected by a window and focused by another diffractive lens to a receiver.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: April 6, 2004
    Assignee: California Institute of Technology
    Inventors: Morteza Gharib, Daniel W. Wilson, Siamak Forouhar, Richard E. Muller, Dominique Fourguette, Darius Modarress, Frederic Taugwalder
  • Patent number: 6522403
    Abstract: The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: February 18, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Daniel W. Wilson, Paul D. Maker, Richard E. Muller, Pantazis Z. Mouroulis
  • Patent number: 6480333
    Abstract: The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: November 12, 2002
    Assignee: California Institute of Technology
    Inventors: Paul D. Maker, Richard E. Muller, Daniel W. Wilson
  • Publication number: 20020162956
    Abstract: A diffractive optic sheer stress sensor operates by forming diverging fringes over a linear area of measurement. A diode laser focuses light onto a diffractive lens which focuses the light to respective slits. The slits form diverging fringes, and scattered light from the fringes is collected by a window and focused by another diffractive lens to a receiver.
    Type: Application
    Filed: December 18, 2001
    Publication date: November 7, 2002
    Inventors: Morteza Gharib, Daniel W. Wilson, Siamak Forouhar, Richard E. Muller, Dominique Fourguette, Darius Modarress, Frederic Taugwalder
  • Publication number: 20020101587
    Abstract: The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.
    Type: Application
    Filed: December 4, 2000
    Publication date: August 1, 2002
    Applicant: National Aeronautics and Space Administration
    Inventors: Daniel W. Wilson, Paul D. Maker, Richard E. Muller, Pantazis Z. Mouroulis
  • Patent number: 5436452
    Abstract: An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages.
    Type: Grant
    Filed: June 21, 1993
    Date of Patent: July 25, 1995
    Assignee: California Institute of Technology
    Inventors: Thomas W. Kenny, William J. Kaiser, Judith A. Podosek, Erika C. Vote, Richard E. Muller, Paul D. Maker
  • Patent number: 5393634
    Abstract: A method for producing a phase hologram using e-beam lithography provides n-ary levels of phase and amplitude by first producing an amplitude hologram on a transparent substrate by e-beam exposure of a resist over a film of metal by exposing n.ltoreq.m.times.m spots of an array of spots for each pixel, where the spots are randomly selected in proportion to the amplitude assigned to each pixel, and then after developing and etching the metal film producing a phase hologram by e-beam lithography using a low contrast resist, such as PMMA, and n-ary levels of low doses less than approximately 200 .mu.C/cm.sup.2 and preferably in the range of 20-200 .mu.C/cm.sup.2, and aggressive development using pure acetone for an empirically determined time (about 6 sec.) controlled to within 1/10 sec. to produce partial development of each pixel in proportion to the n-ary level of dose assigned to it.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: February 28, 1995
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul D. Maker, Richard E. Muller
  • Patent number: 4959326
    Abstract: A method for forming a T-gate for a MESFET device comprises a double exposure, double develop process. In a first exposure employing lithography a layer of PMMA is applied first to a substrate and spun to a desired thickness and then baked for a predetermined period. The gate pattern was aligned to the ohmic level and either E-beam written or exposed to deep UV radiation through a quartz mask. The wafer as treated was then spray developed using a mixture of MIBK and alcohol. After coating with a Novolak resist, the same gate mask was either realigned to the Ohmic level and exposed to mid-range UV radiation in the 400 nm range or alternatively E-beam written with a modified gate pattern to eliminate the T at the gate pad. The wafer was then spray developed again, this time using LSI developer. The second photo was overexposed in order to form a large opening through the top of the T while the first photo was underexposed to make the stem of the T as narrow as possible.
    Type: Grant
    Filed: December 22, 1988
    Date of Patent: September 25, 1990
    Assignee: Siemens Aktiengesellschaft
    Inventors: Bernard J. Roman, Richard E. Muller