Patents by Inventor Richard E. Smalley
Richard E. Smalley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7959779Abstract: This invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Type: GrantFiled: December 27, 2007Date of Patent: June 14, 2011Assignee: William Marsh Rice UniversityInventors: Daniel T. Colbert, Honglie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7939136Abstract: The formation of arrays of fullerene nanotubes is described. A microscopic molecular array of fullerene nanotubes is formed by assembling subarrays of up to 106 fullerene nanotubes into a composite array.Type: GrantFiled: August 22, 2006Date of Patent: May 10, 2011Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Publication number: 20110086781Abstract: The formation of arrays of fullerene nanotubes is described. A microscopic molecular array of fullerene nanotubes is formed by assembling subarrays of up to 106 fullerene nanotubes into a composite array.Type: ApplicationFiled: August 22, 2006Publication date: April 14, 2011Applicant: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7887774Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.Type: GrantFiled: July 1, 2009Date of Patent: February 15, 2011Assignee: William Marsh Rice UniversityInventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H Hauge, Richard E. Smalley, Irene Marie Marek, legal representative
-
Patent number: 7780939Abstract: This invention is directed to chemical derivatives of carbon nanotubes wherein the carbon nanotubes have a diameter up to 3 nm. In one embodiment, this invention also provides a method for preparing carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single-wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents are dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.Type: GrantFiled: June 13, 2006Date of Patent: August 24, 2010Assignee: William Marsh Rice UniversityInventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
-
Publication number: 20100143718Abstract: The present invention relates to new compositions of matter and articles of manufacture comprising SWNTs as nanometer scale conducting rods dispersed in an electrically-insulating matrix. These compositions of matter have novel and useful electrical, mechanical, and chemical properties including applications in antennas, electromagnetic and electro-optic devices, and high-toughness materials. Other compositions of matter and articles of manufacture are disclosed. including polymer-coated and polymer wrapped single-wall nanotubes (SWNTs), small ropes of polymer-coated and polymer-wrapped SWNTs and materials comprising same. This composition provides one embodiment of the SWNT conducting-rod composite mentioned above, and also enables creation of high-concentration suspensions of SWNTs and compatibilization of SWNTs with polymeric matrices in composite materials.Type: ApplicationFiled: August 30, 2007Publication date: June 10, 2010Inventors: Richard E. Smalley, Daniel T. Colbert, Ken A. Smith, Michael O'Connell
-
Patent number: 7727504Abstract: The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.Type: GrantFiled: December 1, 2005Date of Patent: June 1, 2010Assignee: William Marsh Rice UniversityInventors: W. Carter Kittrell, Yuhuang Wang, Myung Jong Kim, Robert H. Hauge, Richard E. Smalley, Irene Morin Marek, legal representative
-
Publication number: 20100096265Abstract: This invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Type: ApplicationFiled: December 27, 2007Publication date: April 22, 2010Inventors: Daniel T. Colbert, Honglie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7670583Abstract: The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.Type: GrantFiled: November 30, 2005Date of Patent: March 2, 2010Assignee: William Marsh Rice UniversityInventors: Robert H. Hauge, Ya-Qiong Xu, Haiqing Peng, Richard E. Smalley, Irene Morin Marek, legal representative
-
Patent number: 7655302Abstract: This invention relates generally to carbon fiber produced from fullerene nanotube arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 fullerene nanotubes in generally parallel orientation.Type: GrantFiled: August 22, 2006Date of Patent: February 2, 2010Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Publication number: 20100008843Abstract: The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.Type: ApplicationFiled: November 30, 2005Publication date: January 14, 2010Applicant: William Marsh Rice UniversityInventors: Robert H. Hauge, Ya-Qiong Xu, Haiqing Peng, Richard E. Smalley, Irene Morin Marek
-
Patent number: 7632569Abstract: This invention relates generally to forming an array of fullerene nanotubes. In one embodiment, a macroscopic molecular array is provided comprising at least about 106 fullerene nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.Type: GrantFiled: August 22, 2006Date of Patent: December 15, 2009Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7578941Abstract: The present invention is generally directed to new liquid-liquid extraction methods for the length-based separation of carbon nanotubes (CNTs) and other 1-dimensional nanostructures.Type: GrantFiled: November 29, 2005Date of Patent: August 25, 2009Assignee: William Marsh Rice UniversityInventors: Kirk J. Ziegler, Daniel J. Schmidt, Robert H. Hauge, Richard E. Smalley, Irene Morin Marek, legal representative
-
Patent number: 7572426Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.Type: GrantFiled: July 29, 2004Date of Patent: August 11, 2009Assignee: William Marsh Rice UniversityInventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H. Hauge, Richard E. Smalley
-
Publication number: 20090169463Abstract: This invention relates generally to forming an array of fullerene nanotubes. In one embodiment, a macroscopic molecular array is provided comprising at least about 106 fullerene nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.Type: ApplicationFiled: August 22, 2006Publication date: July 2, 2009Applicant: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7527780Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.Type: GrantFiled: March 16, 2001Date of Patent: May 5, 2009Assignee: William Marsh Rice UniversityInventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
-
Patent number: 7510695Abstract: This invention relates generally to forming a patterned array of fullerene nanotubes. In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of fullerene nanotubes from each microwell.Type: GrantFiled: August 22, 2006Date of Patent: March 31, 2009Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Patent number: 7494639Abstract: The present invention is directed to methods of purifying carbon nanotubes (CNTs). In general, such methods comprise the following steps: (a) preparing an aqueous slurry of impure CNT material; (b) establishing a source of Fe2+ ions in the slurry to provide a catalytic slurry; (c) adding hydrogen peroxide to the catalytic slurry to provide an oxidative slurry, wherein the Fe2+ ions catalyze the production of hydroxyl radicals; and (d) utilizing the hydroxyl radicals in the oxidative slurry to purify the CNT material and provide purified CNTs.Type: GrantFiled: December 28, 2005Date of Patent: February 24, 2009Assignee: William Marsh Rice UniversityInventors: Irene Morin Marek, legal representative, Yuhuang Wang, Robert H. Hauge, Hongwei Shan, Richard E. Smalley
-
Patent number: 7481989Abstract: This invention relates generally to cutting fullerene nanotubes. In one embodiment, the present invention provides for preparation of homogeneous populations of short fullerene nanotubes by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains fullerene nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut fullerene nanotubes into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Type: GrantFiled: August 22, 2006Date of Patent: January 27, 2009Assignee: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
-
Publication number: 20090004094Abstract: This invention relates generally to cutting fullerene nanotubes. In one embodiment, the present invention provides for preparation of homogeneous populations of short fullerene nanotubes by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains fullerene nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut fullerene nanotubes into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Type: ApplicationFiled: August 22, 2006Publication date: January 1, 2009Applicant: William Marsh Rice UniversityInventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess