Patents by Inventor Richard E. Strite

Richard E. Strite has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9078571
    Abstract: A physiological sensing stethoscope suitable for use in high-noise environments is disclosed. The stethoscope is designed to be substantially matched to the mechanical impedance of monitored physiological activity and substantially mismatched to the mechanical impedance of air-coupled acoustic activity. One embodiment of the stethoscope utilizes a passive acoustic system. Another embodiment utilizes an active Doppler system. The passive and active systems can be combined in one stethoscope enabling switching from a passive mode to an active mode suitable for use in very high-noise environments. The stethoscope is suitable for use in environments having an ambient background noise of 100 dBA and higher. The passive includes a head having a housing, a flexural disc mounted with the housing, and an electromechanical stack positioned between the housing and the flexural disc in contact with the skin of a patient. The active system detects Doppler shifts using a high-frequency transmitter and receiver.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 14, 2015
    Assignee: Active Signal Technologies, Inc.
    Inventors: Keith Bridger, Arthur V. Cooke, Dennis J. Kohlhafer, Joseph J. Lutian, John M. Sewell, Richard E. Strite
  • Publication number: 20120302920
    Abstract: A physiological sensing stethoscope suitable for use in high-noise environments is disclosed. The stethoscope is designed to be substantially matched to the mechanical impedance of monitored physiological activity and substantially mismatched to the mechanical impedance of air-coupled acoustic activity. One embodiment of the stethoscope utilizes a passive acoustic system. Another embodiment utilizes an active Doppler system. The passive and active systems can be combined in one stethoscope enabling switching from a passive mode to an active mode suitable for use in very high-noise environments. The stethoscope is suitable for use in environments having an ambient background noise of 100 dBA and higher. The passive includes a head having a housing, a flexural disc mounted with the housing, and an electromechanical stack positioned between the housing and the flexural disc in contact with the skin of a patient. The active system detects Doppler shifts using a high-frequency transmitter and receiver.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Active Signal Technologies, Inc.
    Inventors: Keith Bridger, Arthur V. Cooke, Dennis J. Kohlhafer, Joseph J. Lutian, John M. Sewell, Richard E. Strite
  • Patent number: 8265291
    Abstract: A physiological sensing stethoscope suitable for use in high-noise environments is disclosed. The stethoscope is designed to be substantially matched to the mechanical impedance of monitored physiological activity and substantially mismatched to the mechanical impedance of air-coupled acoustic activity. One embodiment of the stethoscope utilizes a passive acoustic system. Another embodiment utilizes an active Doppler system. The passive and active systems can be combined in one stethoscope enabling switching from a passive mode to an active mode suitable for use in very high-noise environments. The stethoscope is suitable for use in environments having an ambient background noise of 100 dBA and higher. The passive includes a head having a housing, a flexural disc mounted with the housing, and an electromechanical stack positioned between the housing and the flexural disc in contact with the skin of a patient. The active system detects Doppler shifts using a high-frequency transmitter and receiver.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: September 11, 2012
    Assignee: Active Signal Technologies, Inc.
    Inventors: Keith Bridger, Arthur V. Cooke, Dennis J. Kohlhafer, Joseph J. Lutian, John M. Sewell, Richard E. Strite