Patents by Inventor Richard F. Carson

Richard F. Carson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482835
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: October 25, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Richard F. Carson, Nein-Yi Li, Mial E. Warren, Thomas Fanning, Gianluca Bacchin
  • Publication number: 20220082733
    Abstract: Embodiments comprise a system created through fabricating a lens array through which lasers are emitted. The lens array may be fabricated in the semiconductor substrate used for fabricating the lasers or may be a separate substrate of other transparent material that would be aligned to the lasers. In some embodiments, more lenses may be produced than will eventually be used by the lasers. The inner portion of the substrate may be formed with the lenses that will be used for emitting lasers, and the outer portion of the substrate may be formed with lenses that will not be used for emitting lasers—rather, through etching these additional lenses, the inner lenses may be created with a higher quality.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Richard F. CARSON, John R. JOSEPH, Mial E. WARREN, Thomas A. WILCOX
  • Patent number: 11187831
    Abstract: Embodiments comprise a system created through fabricating a lens array through which lasers are emitted. The lens array may be fabricated in the semiconductor substrate used for fabricating the lasers or may be a separate substrate of other transparent material that would be aligned to the lasers. In some embodiments, more lenses may be produced than will eventually be used by the lasers. The inner portion of the substrate may be formed with the lenses that will be used for emitting lasers, and the outer portion of the substrate may be formed with lenses that will not be used for emitting lasers—rather, through etching these additional lenses, the inner lenses may be created with a higher quality.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 30, 2021
    Assignee: Lumentum Operations LLC
    Inventors: Richard F. Carson, John R. Joseph, Mial E. Warren, Thomas A. Wilcox
  • Publication number: 20210194217
    Abstract: A VCSEL/VECSEL array design is disclosed that results in arrays that can be directly soldered to a PCB using conventional surface-mount assembly and soldering techniques for mass production. The completed VCSEL array does not need a separate package and no precision sub-mount and flip-chip bonding processes are required. The design allows for on-wafer probing of the completed arrays prior to singulation of the die from the wafer. Embodiments relate to semiconductor devices, and more particularly to multibeam arrays of semiconductor lasers for high power and high frequency applications and methods of making and using the same.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Richard F. CARSON, Nein-Yi LI, Mial E. WARREN
  • Patent number: 11022724
    Abstract: Systems, methods, and devices disclosed herein relate to optical assemblies for spatial multiplexing, multi-zone illumination, and optical assemblies. In embodiments, light source arrays are aligned with one or more micro-lens assemblies to generate a specific field of illumination. In embodiments, surface-emitting light sources may be light-emitting diodes and/or surface-emitting lasers. The micro-lens array may be aligned with the light source arrays, on-axis or off-axis to a principal axis of corresponding lenses such that the light sources may be expanded to a desired divergence and field of illumination. In embodiments, multiple light sources may be combined to increase power output for a specific area of the field of illumination, and light sources may be driven independently depending on intended illumination.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: June 1, 2021
    Assignee: Lumentum Operations LLC
    Inventors: Richard F. Carson, Preethi Dacha, Mial E. Warren
  • Patent number: 10944242
    Abstract: A VCSEL/VECSEL array design is disclosed that results in arrays that can be directly soldered to a PCB using conventional surface-mount assembly and soldering techniques for mass production. The completed VCSEL array does not need a separate package and no precision sub-mount and flip-chip bonding processes are required. The design allows for on-wafer probing of the completed arrays prior to singulation of the die from the wafer. Embodiments relate to semiconductor devices, and more particularly to multibeam arrays of semiconductor lasers for high power and high frequency applications and methods of making and using the same.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 9, 2021
    Assignee: Lumentum Operations LLC
    Inventors: Richard F. Carson, Nein-Yi Li, Mial E. Warren
  • Publication number: 20200335942
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Richard F. CARSON, Nein-Yi LI, Mial E. WARREN
  • Publication number: 20200310005
    Abstract: Systems, methods, and devices disclosed herein relate to optical assemblies for spatial multiplexing, multi-zone illumination, and optical assemblies. In embodiments, light source arrays are aligned with one or more micro-lens assemblies to generate a specific field of illumination. In embodiments, surface-emitting light sources may be light-emitting diodes and/or surface-emitting lasers. The micro-lens array may be aligned with the light source arrays, on-axis or off-axis to a principal axis of corresponding lenses such that the light sources may be expanded to a desired divergence and field of illumination. In embodiments, multiple light sources may be combined to increase power output for a specific area of the field of illumination, and light sources may be driven independently depending on intended illumination.
    Type: Application
    Filed: March 24, 2020
    Publication date: October 1, 2020
    Inventors: Richard F. Carson, Preethi Dacha, Mial E. Warren
  • Patent number: 10756515
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 25, 2020
    Assignee: TRILUMINA CORP.
    Inventors: Richard F. Carson, Nein-Yi Li, Mial E. Warren
  • Publication number: 20200169065
    Abstract: A VCSELNECSEL array design is disclosed that results in arrays that can be directly soldered to a PCB using conventional surface-mount assembly and soldering techniques for mass production. The completed VCSEL array does not need a separate package and no precision sub-mount and flip-chip bonding processes are required. The design allows for on-wafer probing of the completed arrays prior to singulation of the die from the wafer. Embodiments relate to semiconductor devices, and more particularly to multibeam arrays of semiconductor lasers for high power and high frequency applications and methods of making and using the same.
    Type: Application
    Filed: August 13, 2018
    Publication date: May 28, 2020
    Inventors: Richard F. CARSON, Nein-Yi LI, Mial E. WARREN
  • Publication number: 20200144791
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Richard F. CARSON, Nein-Yi LI, Mial E. WARREN
  • Patent number: 10530128
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: January 7, 2020
    Assignee: TRILUMINA CORP.
    Inventors: Richard F. Carson, Nein-Yi Li, Mial E. Warren
  • Publication number: 20190036308
    Abstract: Methods, devices and systems are described for enabling a series-connected, single chip vertical-cavity surface-emitting laser (VCSEL) array. In one aspect, the single chip includes one or more non-conductive regions one the conductive layer to produce a plurality of electrically separate conductive regions. Each electrically separate region may have a plurality of VCSEL elements, including an anode region and a cathode region connected in series. The chip is connected to a sub-mount with a metallization pattern, which connects each electrically separate region on the conductive layer in series. In one aspect, the metallization pattern connects the anode region of a first electrically separate region to the cathode region of a second electrically separate region. The metallization pattern may also comprise cuts that maintain electrical separation between the anode and cathode regions on each conductive layer region, and that align with the etched regions.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 31, 2019
    Inventors: Richard F. CARSON, Nein-Yi LI, Mial E. WARREN
  • Publication number: 20180172885
    Abstract: Embodiments comprise a system created through fabricating a lens array through which lasers are emitted. The lens array may be fabricated in the semiconductor substrate used for fabricating the lasers or may be a separate substrate of other transparent material that would be aligned to the lasers. In some embodiments, more lenses may be produced than will eventually be used by the lasers. The inner portion of the substrate may be formed with the lenses that will be used for emitting lasers, and the outer portion of the substrate may be formed with lenses that will not be used for emitting lasers—rather, through etching these additional lenses, the inner lenses may be created with a higher quality.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 21, 2018
    Inventors: Richard F. CARSON, John R. JOSEPH, Mial E. WARREN, Thomas A. WILCOX
  • Patent number: 9927558
    Abstract: Embodiments comprise a system created through fabricating a lens array through which lasers are emitted. The lens array may be fabricated in the semiconductor substrate used for fabricating the lasers or may be a separate substrate of other transparent material that would be aligned to the lasers. In some embodiments, more lenses may be produced than will eventually be used by the lasers. The inner portion of the substrate may be formed with the lenses that will be used for emitting lasers, and the outer portion of the substrate may be formed with lenses that will not be used for emitting lasers—rather, through etching these additional lenses, the inner lenses may be created with a higher quality.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: March 27, 2018
    Assignee: TRILUMINA CORP.
    Inventors: Richard F. Carson, John R. Joseph, Mial E. Warren, Thomas A. Wilcox
  • Publication number: 20170299781
    Abstract: Embodiments comprise a system created through fabricating a lens array through which lasers are emitted. The lens array may be fabricated in the semiconductor substrate used for fabricating the lasers or may be a separate substrate of other transparent material that would be aligned to the lasers. In some embodiments, more lenses may be produced than will eventually be used by the lasers. The inner portion of the substrate may be formed with the lenses that will be used for emitting lasers, and the outer portion of the substrate may be formed with lenses that will not be used for emitting lasers—rather, through etching these additional lenses, the inner lenses may be created with a higher quality.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 19, 2017
    Inventors: Richard F. CARSON, John R. JOSEPH, Mial E. WARREN, Thomas A. WILCOX
  • Patent number: 8995493
    Abstract: A VCSEL array device formed of a monolithic array of raised VCSELs on an electrical contact and raised inactive regions connected to the electrical contact. The VCSELs can be spaced symmetrically or asymmetrically, in a manner to improve power or speed, or in phase and in parallel. The raised VCSELs and raised inactive regions are positioned between the electrical contact and an electrical waveguide. The VCSELs may be separated into subarrays and each VCSEL may be covered with an integrated or bonded microlens for directing light without external lenses. The microlenses may be offset to collect or collimate light and may be shaped to form various lens profiles.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: March 31, 2015
    Assignee: TriLumina Corp.
    Inventors: John R. Joseph, Richard F. Carson, Mial E. Warren, Kevin L. Lear
  • Publication number: 20130266326
    Abstract: A VCSEL array device formed of a monolithic array of raised VCSELs on an electrical contact and raised inactive regions connected to the electrical contact. The VCSELs can be spaced symmetrically or asymmetrically, in a manner to improve power or speed, or in phase and in parallel. The raised VCSELs and raised inactive regions are positioned between the electrical contact and an electrical waveguide. The VCSELs may be separated into subarrays and each VCSEL may be covered with an integrated or bonded microlens for directing light without external lenses. The microlenses may be offset to collect or collimate light and may be shaped to form various lens profiles.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 10, 2013
    Applicant: Trilumina Corporation
    Inventors: John R. Joseph, Richard F. Carson, Mial E. Warren, Kevin L. Lear
  • Patent number: 8189642
    Abstract: A vertical surface emitting laser having a mesa structure formed with sloping side walls. A passivation layer including at least two sublayers at least partially covers the mesa structure. The at least two sublayers have differing stress components arranged to at least partially counter each other. By making the mesa structure with sloping side walls, the deposition of the passivation layer in such a way as to minimize the net stress of the passivation layer is facilitated. In addition, the mesa structure has a first stack of mirror layers comprising a semiconductor material doped with a first dopant and having first peripheral oxidized portions extending a first distance into said first stack, and a second stack of mirror layers comprising a semiconductor material doped with a second dopant and having second peripheral oxidized portions extending a second distance into said second stack, wherein the first distance is different from the second distance.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Emcore Corporation
    Inventors: Nein-Yi Li, Chuan Xie, Chun Lei, Richard F. Carson
  • Patent number: 7021836
    Abstract: An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: April 4, 2006
    Assignee: Emcore Corporation
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Richard F. Carson, Robert P. Bryan, Edwin B. Duckett, III, Shanalyn Adair Kemme, Frederick B. McCormick, David W. Peterson