Patents by Inventor Richard F. Spaide

Richard F. Spaide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10758122
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 1, 2020
    Inventor: Richard F. Spaide
  • Publication number: 20190343383
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 14, 2019
    Inventor: Richard F. Spaide
  • Patent number: 10299677
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 28, 2019
    Inventor: Richard F. Spaide
  • Publication number: 20170319061
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 9, 2017
    Inventor: Richard F. SPAIDE
  • Patent number: 9713424
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: July 25, 2017
    Inventor: Richard F. Spaide
  • Publication number: 20160228000
    Abstract: Computer aided visualization and diagnosis by volume analysis of optical coherence tomography (OCT) angiographic data. In one embodiment, such analysis comprises acquiring an OCT dataset using a processor in conjunction with an imaging system; evaluating the dataset, with the processor, for flow information using amplitude or phase information; generating a matrix of voxel values, with the processor, representing flow occurring in vessels in the volume of tissue; performing volume rendering of these values, the volume rendering comprising deriving three dimensional position and vector information of the vessels with the processor; displaying the volume rendering information on a computer monitor; and assessing the vascularity, vascular density, and vascular flow parameters as derived from the volume rendered images.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 11, 2016
    Inventor: RICHARD F. SPAIDE
  • Patent number: 8939582
    Abstract: During scan capture with an OCT imaging system, the focal plane position can be simultaneously shifted over at least a portion of an image range. As a result, a plurality of image frames respectively corresponding to various focal plane positions is acquired. The image frames can be combined to generate a composite image having suitable resolution throughout the image range, including regions associated with weak-intensity or low-reflectance features. Further, windowed averaging can be performed prior to generation of the composite image so that the composite image incorporates weights given to image data in focus.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 27, 2015
    Assignee: Kabushiki Kaisha Topcon
    Inventors: Richard F. Spaide, Charles A. Reisman, Zhenguo Wang, Kinpui Chan
  • Publication number: 20150015845
    Abstract: During scan capture with an OCT imaging system, the focal plane position can be simultaneously shifted over at least a portion of an image range. As a result, a plurality of image frames respectively corresponding to various focal plane positions is acquired. The image frames can be combined to generate a composite image having suitable resolution throughout the image range, including regions associated with weak-intensity or low-reflectance features. Further, windowed averaging can be performed prior to generation of the composite image so that the composite image incorporates weights given to image data in focus.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Richard F. Spaide, Charles A. Reisman, Zhenguo Wang, Kinpui Chan
  • Patent number: 8834456
    Abstract: Steerable and flexibly curved probes are provided, primarily for surgical applications. A probe with flexible distal portion is inserted through an incision or cannula and the flexible distal portion may be selectively bent or steered using a guide wire. The guide wire is extended through the probe on a radially offset axis, and affixed at its distal end to the distal end of the flexible distal portion. The curvature of the nitinol wire is induced by extending or retracting the wire from the proximal end of the flexible distal portion while the distal end of the guide wire remains affixed to the distal end of the probe. The guide wire is activated by a finger-actuated mechanism. A further embodiment is provided in which the guide wire is fixed at both ends of the flexible distal portion of the probe and has a normally curved conformation, and assumes such conformation after insertion through a straight cannula. Other embodiments and applications are similarly disclosed.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: September 16, 2014
    Inventor: Richard F. Spaide
  • Publication number: 20130123760
    Abstract: Steerable and flexibly curved probes are provided, primarily for surgical applications. A probe with flexible distal portion is inserted through an incision or cannula and the flexible distal portion may be selectively bent or steered using a guide wire. The guide wire is extended through the probe on a radially offset axis, and affixed at its distal end to the distal end of the flexible distal portion. The curvature of the nitinol wire is induced by extending or retracting the wire from the proximal end of the flexible distal portion while the distal end of the guide wire remains affixed to the distal end of the probe. The guide wire is activated by a finger-actuated mechanism. A further embodiment is provided in which the guide wire is fixed at both ends of the flexible distal portion of the probe and has a normally curved conformation, and assumes such conformation after insertion through a straight cannula. Other embodiments and applications are similarly disclosed.
    Type: Application
    Filed: October 24, 2012
    Publication date: May 16, 2013
    Inventor: Richard F. Spaide
  • Patent number: 8317778
    Abstract: Steerable and flexibly curved probes are provided, primarily for A surgical applications. A probe with flexible distal portion is inserted through an incision or cannula and the flexible distal portion may be selectively bent or steered using a guide wire. The guide wire is extended through the probe on a radially offset axis, and affixed at its distal end to the distal end of the flexible distal portion. The curvature of the nitinol wire is induced by extending or retracting the wire from the proximal end of the flexible distal portion while the distal end of the guide wire remains affixed to the distal end of the probe. The guide wire is activated by a finger-actuated mechanism. A further embodiment is provided in which the guide wire is fixed at both ends of the flexible distal portion of the probe and has a normally curved conformation, and assumes such conformation after insertion through a straight cannula. Other embodiments and applications are similarly disclosed.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 27, 2012
    Inventor: Richard F. Spaide
  • Publication number: 20090312750
    Abstract: Steerable and flexibly curved probes are provided, primarily for A surgical applications. A probe with flexible distal portion is inserted through an incision or cannula and the flexible distal portion may be selectively bent or steered using a guide wire. The guide wire is extended through the probe on a radially offset axis, and affixed at its distal end to the distal end of the flexible distal portion. The curvature of the nitinol wire is induced by extending or retracting the wire from the proximal end of the flexible distal portion while the distal end of the guide wire remains affixed to the distal end of the probe. The guide wire is activated by a finger-actuated mechanism. A further embodiment is provided in which the guide wire is fixed at both ends of the flexible distal portion of the probe and has a normally curved conformation, and assumes such conformation after insertion through a straight cannula. Other embodiments and applications are similarly disclosed.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 17, 2009
    Inventor: Richard F. Spaide