Patents by Inventor Richard Francis Taylor
Richard Francis Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11929433Abstract: The present disclosure relates generally to semiconductor structures, and more particularly to asymmetric field effect transistors (FET) on fully depleted silicon on insulator (FDSOI) semiconductor devices for high frequency and high voltage applications and their method of manufacture. The semiconductor device of the present disclosure includes a semiconductor-on-insulator (SOI) layer disposed above a substrate, the SOI layer having a source region, a channel region, a drift region and a drain region, where the drift region adjoins the drain region and the channel region, a gate structure disposed on the channel region, a multilayer drain spacer disposed on a drain-facing sidewall of the gate structure and covering the drift region, and a source spacer disposed on a source-facing sidewall of the gate structure, where the source and drain spacers are asymmetric with each other.Type: GrantFiled: November 10, 2021Date of Patent: March 12, 2024Assignee: GlobalFoundries U.S. Inc.Inventors: Ignasi Cortes, Alban Zaka, Tom Herrmann, El Mehdi Bazizi, Richard Francis Taylor, III
-
Publication number: 20220069125Abstract: The present disclosure relates generally to semiconductor structures, and more particularly to asymmetric field effect transistors (FET) on fully depleted silicon on insulator (FDSOI) semiconductor devices for high frequency and high voltage applications and their method of manufacture. The semiconductor device of the present disclosure includes a semiconductor-on-insulator (SOI) layer disposed above a substrate, the SOI layer having a source region, a channel region, a drift region and a drain region, where the drift region adjoins the drain region and the channel region, a gate structure disposed on the channel region, a multilayer drain spacer disposed on a drain-facing sidewall of the gate structure and covering the drift region, and a source spacer disposed on a source-facing sidewall of the gate structure, where the source and drain spacers are asymmetric with each other.Type: ApplicationFiled: November 10, 2021Publication date: March 3, 2022Inventors: IGNASI CORTES, ALBAN ZAKA, TOM HERRMANN, EL MEHDI BAZIZI, RICHARD FRANCIS TAYLOR, III
-
Patent number: 11245032Abstract: The present disclosure relates generally to semiconductor structures, and more particularly to asymmetric field effect transistors (FET) on fully depleted silicon on insulator (FDSOI) semiconductor devices for high frequency and high voltage applications and their method of manufacture. The semiconductor device of the present disclosure includes a semiconductor-on-insulator (SOI) layer disposed above a substrate, the SOI layer having a source region, a channel region, a drift region and a drain region, where the drift region adjoins the drain region and the channel region, a gate structure disposed on the channel region, a multilayer drain spacer disposed on a drain-facing sidewall of the gate structure and covering the drift region, and a source spacer disposed on a source-facing sidewall of the gate structure, where the source and drain spacers are asymmetric with each other.Type: GrantFiled: April 2, 2019Date of Patent: February 8, 2022Assignee: GLOBALFOUNDRIES U.S. Inc.Inventors: Ignasi Cortes, Alban Zaka, Tom Herrmann, El Mehdi Bazizi, Richard Francis Taylor, III
-
Publication number: 20200321466Abstract: The present disclosure relates generally to semiconductor structures, and more particularly to asymmetric field effect transistors (FET) on fully depleted silicon on insulator (FDSOI) semiconductor devices for high frequency and high voltage applications and their method of manufacture. The semiconductor device of the present disclosure includes a semiconductor-on-insulator (SOI) layer disposed above a substrate, the SOI layer having a source region, a channel region, a drift region and a drain region, where the drift region adjoins the drain region and the channel region, a gate structure disposed on the channel region, a multilayer drain spacer disposed on a drain-facing sidewall of the gate structure and covering the drift region, and a source spacer disposed on a source-facing sidewall of the gate structure, where the source and drain spacers are asymmetric with each other.Type: ApplicationFiled: April 2, 2019Publication date: October 8, 2020Inventors: IGNASI CORTES, ALBAN ZAKA, TOM HERRMANN, EL MEHDI BAZIZI, RICHARD FRANCIS TAYLOR III
-
Patent number: 10461717Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.Type: GrantFiled: January 14, 2019Date of Patent: October 29, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Publication number: 20190149120Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.Type: ApplicationFiled: January 14, 2019Publication date: May 16, 2019Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Patent number: 10181834Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.Type: GrantFiled: August 8, 2017Date of Patent: January 15, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Publication number: 20170338791Abstract: In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.Type: ApplicationFiled: August 8, 2017Publication date: November 23, 2017Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Patent number: 9735753Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.Type: GrantFiled: January 21, 2016Date of Patent: August 15, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Publication number: 20160142036Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.Type: ApplicationFiled: January 21, 2016Publication date: May 19, 2016Inventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Patent number: 9276056Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.Type: GrantFiled: May 27, 2011Date of Patent: March 1, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen
-
Publication number: 20120056297Abstract: A magnetically-coupled structure is integrated with an integrated circuit in back end-of-line (BEOL) digital CMOS fabrication processes. A differential primary (or secondary) coil is formed by patterning a thick copper (Cu) metal layer, and a single-ended secondary (or primary) coil is formed by patterning a thick aluminum (Al) top metal bonding layer. Crossovers and/or cross-unders are formed using thin metal layers. One embodiment provides a stacked balun with a differential primary input winding defined in the copper layer, directly underneath a single-ended spiral winding defined in the aluminum layer. The spiral forms the single-ended secondary output of the balun and is rotated by 90° to prevent metal shorting for its cross-under connections. Another embodiment provides a transformer with one differential primary (or secondary) coil defined in the copper layer and another differential secondary (or primary) coil defined in the aluminum layer and adding a center tap.Type: ApplicationFiled: May 27, 2011Publication date: March 8, 2012Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Siraj Akhtar, Richard Francis Taylor, Petteri Litmanen