Patents by Inventor Richard G. Harris

Richard G. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210073667
    Abstract: Quantum processors having qubits with tunable capacitance are provided. The qubits include Josephson junctions shunted by capacitors and are tunably coupled to capacitance loops such that the resonant frequencies of the qubits and capacitance loops avoid entanglement with each other. Methods for tuning the capacitance of such qubits by varying the coupler's coupling strength are provided. These methods include methods for calibrating qubits' capacitance.
    Type: Application
    Filed: August 18, 2020
    Publication date: March 11, 2021
    Inventor: Richard G. Harris
  • Publication number: 20210013391
    Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures.
    Type: Application
    Filed: May 3, 2017
    Publication date: January 14, 2021
    Inventors: Mark W. Johnson, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Kelly T. R. Boothby, Loren J. Swenson, Emile M. Hoskinson, Christopher B. Rich, Jan E.S. Johansson
  • Patent number: 10891554
    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 12, 2021
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Richard G. Harris, Paul I. Bunyk, Mohammad H. S. Amin, Emile M. Hoskinson
  • Publication number: 20200311591
    Abstract: A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Inventors: William W. Bernoudy, Mohammad H. Amin, James A. King, Jeremy P. Hilton, Richard G. Harris, Andrew J. Berkley, Kelly T. R. Boothby
  • Publication number: 20200183768
    Abstract: Methods for reducing errors in calibrated devices comprise detecting outliers, self-checking consistency of measurements, tuning device controls to target values, and absolutely calibrating devices via a first standard and cross-checking the results via a second standard. The first standard may be a calibrated current and the second calibration standard may be a calibrated frequency. A calibrated frequency may be a microwave signal applied to the body of a qubit. Qubit annealing controls can quickly lower and raise the tunnel barrier to measures the oscillation frequency of the qubit between two potential wells.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 11, 2020
    Inventors: Andrew J. Berkley, Richard G. Harris
  • Publication number: 20200144476
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Application
    Filed: January 31, 2018
    Publication date: May 7, 2020
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Publication number: 20200054961
    Abstract: Systems and methods for improving the performance of dilution refrigeration systems are described. Filters and traps employed in the helium circuit of a dilution refrigerator may be modified to improve performance. Some traps may be designed to harness cryocondensation as opposed to cryoadsorption. A cryocondensation trap employs a cryocondensation surface having a high thermal conductivity and a high specific heat with a binding energy that preferably matches at least one contaminant but does not match helium. Multiple traps may be coupled in series in the helium circuit, with each trap designed to trap a specific contaminant or set of contaminants. Both cryocondensation and cryoadsorption may be exploited among multiple traps.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Jacob Craig Petroff, Richard G. Harris
  • Patent number: 10552757
    Abstract: Systems and methods for employing macroscopic resonant tunneling operations in quantum processors are described. New modes of use for quantum processor architectures employ probe qubits to determine energy eigenvalues of a problem Hamiltonian through macroscopic resonant tunneling operations. A dedicated probe qubit design that may be added to quantum processor architectures is also described. The dedicated probe qubit enables improved performance of macroscopic resonant tunneling operations and, consequently, improved performance of the new modes of use described.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: February 4, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Mohammad H. S. Amin, Andrew J. Berkley, Richard G. Harris, Trevor Michael Lanting, Anatoly Yu Smirnov
  • Patent number: 10467545
    Abstract: A higher degree of interactions between qubits is realizable. This disclosure generally relates to devices, and architectures for quantum instruments comprising quantum devices and techniques for operating the same. Systems and processors for creating and using higher degree interactions between qubits may be found herein. Higher order interactions include interactions among three or more qubits. Methods for creating and using higher degree interactions among three or more qubits on a quantum processor may be found herein.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: November 5, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventor: Richard G. Harris
  • Publication number: 20190305206
    Abstract: Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 3, 2019
    Inventors: Richard G. Harris, Andrew J. Berkley, Jan Johansson, Mark Johnson, Mohammad Amin, Paul I. Bunyk
  • Publication number: 20190228331
    Abstract: In a quantum processor some couplers couple a given qubit to a nearest neighbor qubit (e.g., vertically and horizontally in an ordered 2D array), other couplers couple to next-nearest neighbor qubits (e.g., diagonally in the ordered 2D array). Couplers may include half-couplers, to selectively provide communicative coupling between a given qubit and other qubits, which may or may not be nearest or even next-nearest-neighbors. Tunable couplers selective mediate communicative coupling. A control system may impose a connectivity on a quantum processor, different than an “as designed” or “as manufactured” physical connectivity. Imposition may be via a digital processor processing a working or updated working graph, to map or embed a problem graph. A set of exclude qubits may be created from a comparison of hardware and working graphs. An annealing schedule may adjust a respective normalized inductance of one or more qubits, for instance to exclude certain qubits.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Richard G. Harris, Paul I. Bunyk, Mohammad H.S. Amin, Emile M. Hoskinson
  • Patent number: 10290798
    Abstract: Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 14, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Richard G. Harris, Andrew J. Berkley, Jan Johansson, Mark Johnson, Mohammad Amin, Paul I. Bunyk
  • Patent number: 10268622
    Abstract: Topologies for analog computing systems are provided. Qubits in the topology are grouped into cells, and cells are coupled to adjacent cells by inter-cell couplers. At least some cells are coupled to non-adjacent cells via long-range couplers. Long-range couplers may be arranged into coverings so that certain sets of qubits within a covering region may be coupled with a reduced number of couplers. Each cell within a covering region without a long-range coupler may be proximate to a cell with a long range coupler so that each cell within the covering region is no more than a certain coupling distance away from a long-range coupler. Long-range couplers may couple over a greater physical distance than inter-cell couplers. Long-range couplers may couple to qubits over a larger coupling region, and may extend across multiple crossing regions between qubits.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 23, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jeremy P. Hilton, Aidan Patrick Roy, Paul I. Bunyk, Andrew Douglas King, Kelly T. R. Boothby, Richard G. Harris, Chunqing Deng
  • Publication number: 20180373996
    Abstract: Systems and methods for employing macroscopic resonant tunneling operations in quantum processors are described. New modes of use for quantum processor architectures employ probe qubits to determine energy eigenvalues of a problem Hamiltonian through macroscopic resonant tunneling operations. A dedicated probe qubit design that may be added to quantum processor architectures is also described. The dedicated probe qubit enables improved performance of macroscopic resonant tunneling operations and, consequently, improved performance of the new modes of use described.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 27, 2018
    Inventors: Mohammad H.S. Amin, Andrew J. Berkley, Richard G. Harris, Trevor Michael Lanting, Anatoly Yu Smirnov
  • Publication number: 20180314970
    Abstract: A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.
    Type: Application
    Filed: July 6, 2018
    Publication date: November 1, 2018
    Inventors: Richard G. Harris, Mohammad H. Amin, Anatoly Smirnov
  • Patent number: 10068180
    Abstract: Systems and methods for employing macroscopic resonant tunneling operations in quantum processors are described. New modes of use for quantum processor architectures employ probe qubits to determine energy eigenvalues of a problem Hamiltonian through macroscopic resonant tunneling operations. A dedicated probe qubit design that may be added to quantum processor architectures is also described. The dedicated probe qubit enables improved performance of macroscopic resonant tunneling operations and, consequently, improved performance of the new modes of use described.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: September 4, 2018
    Assignee: D-Wave Systems Inc.
    Inventors: Mohammad H. S. Amin, Andrew J. Berkley, Richard G. Harris, Trevor Michael Lanting, Anatoly Yu Smirnov
  • Publication number: 20180246848
    Abstract: A topology or hardware graph of a quantum processor is modifiable, for example prior to embedding of a problem, for instance by creating chains of qubits, where each chain which operates as a single or logical qubit to impose a logical graph on the quantum processor. A user interface (UI) allows a user to select a topology suited for embedding a particular problem or type of problem, to supply parameters that define the desired topology, or to supply or specify a problem graph or problem definition from which a processor-based system determines or selects an appropriate topology or logical graph to impose. Topologies may have regularity and/or self-similarity over the quantum processor or portions thereof, which portions may constitute unit cells. Logical graphs imposed on the quantum processor may take the form of a hypercube graph. A UI allows the user to specify a desired dimension of the hypercube graph.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 30, 2018
    Inventors: Adam Douglass, Richard G. Harris, Trevor Michael Lanting, Andrew Douglas King, Jack Raymond, Murray C. Thom
  • Publication number: 20180240034
    Abstract: A higher degree of interactions between qubits is realizable. This disclosure generally relates to devices, and architectures for quantum instruments comprising quantum devices and techniques for operating the same. Systems and processors for creating and using higher degree interactions between qubits may be found herein. Higher order interactions include interactions among three or more qubits. Methods for creating and using higher degree interactions among three or more qubits on a quantum processor may be found herein.
    Type: Application
    Filed: August 11, 2016
    Publication date: August 23, 2018
    Inventor: Richard G. Harris
  • Publication number: 20180218280
    Abstract: A system and method of operation embeds a three-dimensional structure in a topology of an analog processor, for example a quantum processor. The analog processor may include a plurality of qubits arranged in tiles or cells. A number of qubits and communicatively coupled as logical qubits, each logical qubit which span across a plurality of tiles or cells of the qubits. Communicatively coupling between qubits of any given logical qubit can be implemented via application or assignment of a first ferromagnetic coupling strength to each of a number of couplers that communicatively couple the respective qubits in the logical qubit. Other ferromagnetic coupling strengths can be applied or assigned to couplers that communicatively couple qubits that are not part of the logical qubit. The first ferromagnetic coupling strength may be substantially higher than the other ferromagnetic coupling strengths.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 2, 2018
    Inventors: Richard G. Harris, Kelly T.R. Boothby, Andrew D. King
  • Patent number: 10037493
    Abstract: A quantum processor is operable as a universal adiabatic quantum computing system. The quantum processor includes physical qubits, with at least a first and second communicative coupling available between pairs of qubits via an in-situ tunable superconducting capacitive coupler and an in-situ tunable superconducting inductive coupler, respectively. Tunable couplers provide diagonal and off-diagonal coupling. Compound Josephson junctions (CJJs) of the tunable couplers are responsive to a flux bias to tune a sign and magnitude of a sum of a capacitance of a fixed capacitor and a tunable capacitance which is mediated across a pair of coupling capacitors. The qubits may be hybrid qubits, operable in a flux regime or a charge regime. Qubits may include a pair of CJJs that interrupt a loop of material and which are separated by an island of superconducting material which is voltage biased with respect to a qubit body.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: July 31, 2018
    Assignee: D-Wave Systems Inc.
    Inventors: Richard G. Harris, Mohammad H. S. Amin, Anatoly Smirnov