Patents by Inventor Richard G. Smolen

Richard G. Smolen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200075088
    Abstract: Integrated circuits with an array of programmable resistive switch elements are provided. A programmable resistive switch element may include two non-volatile resistive memory elements connected in series and two varistors. A first of the two varistors is used to program a top resistive memory element in the resistive switch element, whereas a second of the two varistors is used to program a bottom resistive memory element in the resistive switch element. Row and column drivers implemented using only thin gate oxide transistors are used to program a selected resistive switch in the array without violating a maximum voltage level that satisfies predetermined defects per million (DPM) reliability criteria.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Applicant: Intel Corporation
    Inventors: Yue-Song He, Rusli Kurniawan, Richard G. Smolen, Christopher J. Pass, Andy L. Lee, Jeffrey T. Watt, Anwen Liu, Alok Nandini Roy
  • Patent number: 10573375
    Abstract: Integrated circuits with an array of programmable resistive switch elements are provided. A programmable resistive switch element may include two non-volatile resistive memory elements connected in series and two varistors. A first of the two varistors is used to program a top resistive memory element in the resistive switch element, whereas a second of the two varistors is used to program a bottom resistive memory element in the resistive switch element. Row and column drivers implemented using only thin gate oxide transistors are used to program a selected resistive switch in the array without violating a maximum voltage level that satisfies predetermined defects per million (DPM) reliability criteria.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 25, 2020
    Assignee: Intel Corporation
    Inventors: Yue-Song He, Rusli Kurniawan, Richard G. Smolen, Christopher J. Pass, Andy L. Lee, Jeffrey T. Watt, Anwen Liu, Alok Nandini Roy
  • Patent number: 10447275
    Abstract: Integrated circuits with programmable resistive switch elements are provided. A programmable resistive switch element may include two non-volatile resistive elements connected in series and a programming transistor. The programmable resistive switch elements may be configured in a crossbar array and may be interposed within the user data path. Driver circuits may also be included for selectively turning on or turning off the switches by applying positive and optionally negative voltages.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 15, 2019
    Assignee: Intel Corporation
    Inventors: Andy L. Lee, Richard G. Smolen, Rusli Kurniawan, Jeffrey T. Watt, Christopher J. Pass, Yue-Song He
  • Patent number: 10269426
    Abstract: Integrated circuits with memory elements are provided. A memory element may include non-volatile resistive elements coupled together in a back-to-back configuration or an in-line configuration. Erase, programming, and margining operations may be performed on the resistive elements. Each of the resistive memory elements may receive a positive voltage, a ground voltage, or a negative voltage on either the anode or cathode terminal.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 23, 2019
    Assignee: Intel Corporation
    Inventors: Richard G. Smolen, Rusli Kurniawan, Yue-Song He, Andy L. Lee, Jeffrey T. Watt, Christopher J. Pass
  • Publication number: 20190020344
    Abstract: Integrated circuits with programmable resistive switch elements are provided. A programmable resistive switch element may include two non-volatile resistive elements connected in series and a programming transistor. The programmable resistive switch elements may be configured in a crossbar array and may be interposed within the user data path. Driver circuits may also be included for selectively turning on or turning off the switches by applying positive and optionally negative voltages.
    Type: Application
    Filed: August 29, 2018
    Publication date: January 17, 2019
    Inventors: Andy L. Lee, Richard G. Smolen, Rusli Kurniawan, Jeffrey T. Watt, Christopher J. Pass, Yue-Song He
  • Publication number: 20180366192
    Abstract: Integrated circuits with memory elements are provided. A memory element may include non-volatile resistive elements coupled together in a back-to-back configuration or an in-line configuration. Erase, programming, and margining operations may be performed on the resistive elements. Each of the resistive memory elements may receive a positive voltage, a ground voltage, or a negative voltage on either the anode or cathode terminal.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Applicant: Intel Corporation
    Inventors: Richard G. Smolen, Rusli Kurniawan, Yue-Song He, Andy L. Lee, Jeffrey T. Watt, Christopher J. Pass
  • Patent number: 10090840
    Abstract: Integrated circuits with programmable resistive switch elements are provided. A programmable resistive switch element may include two non-volatile resistive elements connected in series and a programming transistor. The programmable resistive switch elements may be configured in a crossbar array and may be interposed within the user data path. Driver circuits may also be included for selectively turning on or turning off the switches by applying positive and optionally negative voltages.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 2, 2018
    Assignee: Intel Corporation
    Inventors: Andy L. Lee, Richard G. Smolen, Rusli Kurniawan, Jeffrey T. Watt, Christopher J. Pass, Yue-Song He
  • Patent number: 8716876
    Abstract: Systems and methods for stacking a memory chip with respect to an integrated circuit (IC) chip are described. In the systems and methods, a plurality of like memory chips are stacked above one or more IC chip members of a family. The use of a plurality of like memory chips for the family may save costs and complications involved in designing, fabricating, and assembling memory chips of different sizes. The use of a plurality of the memory chips on a single IC chip can enable higher data transfer rates due to parallel data transmission.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 6, 2014
    Assignee: Altera Corporation
    Inventors: Richard G. Smolen, Jon M. Long
  • Patent number: 8130538
    Abstract: A memory circuit including a voltage divider with a first phase change memory (PCM) device and a second PCM device coupled to the first PCM device is described. In one embodiment, the first PCM device is in a set resistance state and the second PCM device is in a reset resistance state. Also, in one embodiment, the voltage divider further includes a first switch coupled to the first PCM device and a second switch coupled to the first switch and the second PCM device. In one embodiment, the memory circuit further includes a half latch coupled to the voltage divider and a cascade transistor coupled to the half latch and the voltage divider.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: March 6, 2012
    Assignee: Altera Corporation
    Inventors: Peter J. McElheny, Richard G. Smolen, John C. Costello
  • Publication number: 20100177560
    Abstract: A memory circuit including a voltage divider with a first phase change memory (PCM) device and a second PCM device coupled to the first PCM device is described. In one embodiment, the first PCM device is in a set resistance state and the second PCM device is in a reset resistance state. Also, in one embodiment, the voltage divider further includes a first switch coupled to the first PCM device and a second switch coupled to the first switch and the second PCM device. In one embodiment, the memory circuit further includes a half latch coupled to the voltage divider and a cascade transistor coupled to the half latch and the voltage divider.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: Altera Corporation
    Inventors: Peter J. McElheny, Richard G. Smolen, John C. Costello
  • Patent number: 7236398
    Abstract: A split-gate memory cell includes a memory transistor and a select transistor. The memory transistor includes a drain, a source, a control gate and a floating gate. The select transistor includes a drain, a source and a select gate. The source of the select transistor is electrically connected to the drain of the memory transistor. The threshold state of the floating gate of the memory transistor determines the logic output of the memory cell. When the split-gate memory cell is erased or programmed a high voltage is only applied to the control gate and source of the memory transistor. As a result, no high voltage will be placed on any portion of the select transistor and the split-gate memory cell can achieve an increased cycling endurance.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 26, 2007
    Assignee: Altera Corporation
    Inventors: Richard G. Smolen, Myron Wai Wong
  • Patent number: 6624467
    Abstract: Provided is a “castled” active area mask. A castled active area mask is one which has been lengthened to extend beyond its intended intersection with a tunnel dielectric to form the tunnel window of an EEPROM cell, and has also been widened in at least a portion of the extension. For example, in one preferred embodiment, a castled extension may have a “T” shape. The castled active area generated by such a mask provides a buffer to absorb field oxide encroachment before it reaches the EEPROM cell's TD window. A mask in accordance with the present invention may be used to fabricate EEPROM cells which are not subject to TD window size variations due to field oxide encroachment, and EEPROM cell arrays of increased density.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: September 23, 2003
    Assignee: Altera Corporation
    Inventors: Peter J. McElheny, Raminda U. Madurawe, Richard G. Smolen, Minchang Liang
  • Patent number: 6472272
    Abstract: Provided is a “castled” active area mask. A castled active area mask is one which has been lengthened to extend beyond its intended intersection with a tunnel dielectric to form the tunnel window of an EEPROM cell, and has also been widened in at least a portion of the extension. For example, in one preferred embodiment, a castled extension may have a “T” shape. The castled active area generated by such a mask provides a buffer to absorb field oxide encroachment before it reaches the EEPROM cell's TD window. A mask in accordance with the present invention may be used to fabricate EEPROM cells which are not subject to TD window size variations due to field oxide encroachment, and EEPROM cell arrays of increased density.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: October 29, 2002
    Assignee: Altera Corporation
    Inventors: Peter J. McElheny, Raminda U. Madurawe, Richard G. Smolen, Minchang Liang
  • Patent number: 6365929
    Abstract: Disclosed is an EEPROM device, and a method of making such a device, which incorporates a self-aligned tunnel window having acceptably low gate capacitance at the tunnel oxide node, and which avoids the defects caused by field oxide induced stresses in the tunnel oxide. The EEPROM of the present invention includes a semiconductor substrate with a doped memory diffusion region. Overlying at least a portion of the memory diffusion is a tunnel oxide. Overlying at least a portion of the tunnel oxide is a floating gate structure including an extension. The tunnel window of the EEPROM of the present invention is defined within at least a portion of the tunnel oxide and having at least two edges defined by the floating gate extension, so that when a defined voltage is applied to the memory diffusion a tunnel current sufficient to change the state of the EEPROM flows between the memory diffusion and the floating gate structure.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: April 2, 2002
    Assignee: Altera Corporation
    Inventor: Richard G. Smolen
  • Publication number: 20020011625
    Abstract: Disclosed is an EEPROM device, and a method of making such a device, which incorporates a self-aligned tunnel window having acceptably low gate capacitance at the tunnel oxide node, and which avoids the defects caused by field oxide induced stresses in the tunnel oxide. The EEPROM of the present invention includes a semiconductor substrate with a doped memory diffusion region. Overlying at least a portion of the memory diffusion is a tunnel oxide. Overlying at least a portion of the tunnel oxide is a floating gate structure including an extension. The tunnel window of the EEPROM of the present invention is defined within at least a portion of the tunnel oxide and having at least two edges defined by the floating gate extension, so that when a defined voltage is applied to the memory diffusion a tunnel current sufficient to change the state of the EEPROM flows between the memory diffusion and the floating gate structure.
    Type: Application
    Filed: January 22, 1999
    Publication date: January 31, 2002
    Inventor: RICHARD G. SMOLEN
  • Patent number: 6265746
    Abstract: Provided is a high resistance value vertically-integrated semiconductor interconnect with resistance in the 10 k&OHgr;-10 G&OHgr; range, and a process to make such highly resistive interconnects together with low resistive interconnects in a precisely controllable manner. In addition, provided is an SRAM cell with highly resistive contact processing for a pull-up resistor.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: July 24, 2001
    Assignee: Altera Corporation
    Inventors: Raminda U. Madurawe, Charu Sardana, Peter J. McElheny, Richard G. Smolen
  • Patent number: 6187634
    Abstract: Provided is a “castled” active area mask. A castled active area mask is one which has been lengthened to extend beyond its intended intersection with a tunnel dielectric to form the tunnel window of an EEPROM cell, and has also been widened in at least a portion of the extension. For example, in one preferred embodiment, a castled extension may have a “T” shape. The castled active area generated by such a mask provides a buffer to absorb field oxide encroachment before it reaches the EEPROM cell's TD window. A mask in accordance with the present invention may be used to fabricate EEPROM cells which are not subject to TD window size variations due to field oxide encroachment, and EEPROM cell arrays of increased density.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: February 13, 2001
    Assignee: Altera Corporation
    Inventors: Peter J. McElheny, Raminda U. Madurawe, Richard G. Smolen, Minchang Liang
  • Patent number: 6127217
    Abstract: Provided is a high resistance value vertically-integrated semiconductor interconnect, and a process to make such highly resistive interconnects together with low resistive interconnects in a precisely controllable manner. In addition, provided is an SRAM cell with highly resistive contact processing for a pull-up resistor.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: October 3, 2000
    Assignee: Altera Corporation
    Inventors: Raminda U. Madurawe, Charu Sardana, Peter J. McElheny, Richard G. Smolen
  • Patent number: 5905675
    Abstract: Disclosed is a method for biasing dual row line EEPROM cells. The new biasing scheme improves the data retention lifetime of an EEPROM cell by reducing the potential difference between the control gate and the write column of the cell, which reduces the tunnel oxide electric field. In a preferred embodiment, the method involves applying bias voltages to the control gate and write column of an EEPROM cell such that the potential difference between the control gate and the right column is no more than about 0.5 volts. By biasing the cell's write column to a positive voltage, the tunnel oxide field may be significantly reduced. Moreover, the invention provides a method of selecting a write column voltage based on a control gate voltage such that the tunnel oxide field is substantially balanced in all its modes. This biasing scheme minimizes SILC and improves cell reliability.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: May 18, 1999
    Assignee: Altera Corporation
    Inventors: Raminda U. Madurawe, Richard G. Smolen, Minchang Liang, James D. Sansbury, John E. Turner, John C. Costello, Myron W. Wong
  • Patent number: 5904524
    Abstract: Disclosed is an EEPROM device, and a method of making such a device, which incorporates a self-aligned tunnel window having acceptably low gate capacitance at the tunnel oxide node, and which avoids the defects caused by field oxide induced stresses in the tunnel oxide. The EEPROM of the present invention includes a semiconductor substrate with a doped memory diffusion region. Overlying at least a portion of the memory diffusion is a tunnel oxide. Overlying at least a portion of the tunnel oxide is a floating gate structure including an extension. The tunnel window of the EEPROM of the present invention is defined within at least a portion of the tunnel oxide and having at least two edges defined by the floating gate extension, so that when a defined voltage is applied to the memory diffusion a tunnel current sufficient to change the state of the EEPROM flows between the memory diffusion and the floating gate structure.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: May 18, 1999
    Assignee: Altera Corporation
    Inventor: Richard G. Smolen