Patents by Inventor Richard Goodwin

Richard Goodwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122712
    Abstract: Apparatus, for use at a valve of a heart of a subject, includes a first catheter, a second catheter, and a translation element. The translation element is connected to, and operatively joins, the distal ends of the first catheter and the second catheter. The translation element is operable to translate the distal ends laterally with respect to each other to transition the apparatus between (i) a first state in which the distal ends are held next to each other for transluminal advancement to the heart, and (ii) a second state in which the distal ends are spaced apart from each other for positioning at a first location on the annulus and a second location on the annulus, respectively. The apparatus is configured to, while in the second state, from the distal ends, anchor a first tissue anchor at the first location, and a second tissue anchor at the second location.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Jonathan Goodwin, Michael W. Sutherland, Morgan House, Richard J. Morrill, Matt Guimond, Christopher C. Lee, Kate E. Cutuli, Nareak Douk
  • Publication number: 20240089235
    Abstract: A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses.
    Type: Application
    Filed: June 8, 2023
    Publication date: March 14, 2024
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess P. Parnell, Jonathan R. Rogers
  • Patent number: 11902240
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: February 13, 2024
    Assignee: Centripetal Networks, LLC
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Publication number: 20230336522
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Patent number: 11736440
    Abstract: A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: August 22, 2023
    Assignee: Centripetal Networks, LLC
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess P. Parnell, Jonathan R. Rogers
  • Publication number: 20230179563
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Publication number: 20230107315
    Abstract: In general, the present disclosure is directed to systems and methods of evaluating a subject's risk of one or more complications associated with pelvic organ prolapse surgery. The method comprising: obtaining, by a computing system comprising one or more computing devices, sample data associated with the subject; inputting, by the computing system, the sample data into a machine-learned immune response model; receiving, by the computing system as an output of the machine-learned immune response model, one or more predictions of post-surgical complications of mesh exposure through the vaginal wall associated with the subject; and performing a pelvic organ prolapse repair surgery on the subject, wherein the surgery is performed based at least in part on the one or more predictions of post-surgical complications by the machine-learned immune response model associated with a likelihood of success.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 6, 2023
    Inventors: MELISSA MOSS, MIHYUN L. WAUGH, NICHOLAS D. BOLTIN, LAUREN WOLF, RONNIE HORNER, MATTHEW HERMES, THOMAS WHEELER, RICHARD GOODWIN, RICHARD MICHAEL GOWER
  • Publication number: 20230095306
    Abstract: A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess P. Parnell, Jonathan R. Rogers
  • Patent number: 11570138
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: January 31, 2023
    Assignee: Centripetal Networks, Inc.
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Patent number: 11539664
    Abstract: A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: December 27, 2022
    Assignee: Centripetal Networks, Inc.
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess Parnell, Jonathan R. Rogers
  • Publication number: 20220321531
    Abstract: A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 6, 2022
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess Parnell, Jonathan R. Rogers
  • Publication number: 20220210119
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Patent number: 11362996
    Abstract: A packet-filtering network appliance protects networks from threats by enforcing policies on in-transit packets crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their flows are sent to cyberanalysis applications located at security operations centers (SOCs). Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, generating a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses. The present disclosure describes incident logging that efficiently incorporates logs of many flows that comprise the incident, potentially reducing resource consumption while improving the informational/cyberanalytical value for cyberanalysis when compared to the component flow logs. Incident logging vs. flow logging can be automatically and adaptively switched on or off.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: June 14, 2022
    Assignee: Centripetal Networks, Inc.
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess Parnell, Jonathan R. Rogers
  • Publication number: 20220131835
    Abstract: A packet-filtering network appliance protects networks from threats by enforcing policies on in-transit packets crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their flows are sent to cyberanalysis applications located at security operations centers (SOCs). Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, generating a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses. The present disclosure describes incident logging that efficiently incorporates logs of many flows that comprise the incident, potentially reducing resource consumption while improving the informational/cyberanalytical value for cyberanalysis when compared to the component flow logs. Incident logging vs. flow logging can be automatically and adaptively switched on or off.
    Type: Application
    Filed: July 20, 2021
    Publication date: April 28, 2022
    Inventors: John Fenton, Peter Geremia, Richard Goodwin, Sean Moore, Vincent Mutolo, Jess Parnell, Jonathan R. Rogers
  • Patent number: 11316823
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: April 26, 2022
    Assignee: Centripetal Networks, Inc.
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Publication number: 20220070140
    Abstract: Network devices that are inserted inline into network links and process in-transit packets may significantly improve their packet-throughput performance by not assigning L3 IP addresses and L2 MAC addresses to their network interfaces and thereby process packets through a logical fast path that bypasses the slow path through the operating system kernel. When virtualizing such Bump-In-The-Wire (BITW) devices for deployment into clouds, the network interfaces must have L3 IP and L2 MAC addresses assigned to them. Thus, packets are processed through the slow path of a virtual BITW device, significantly reducing the performance. By adding new logic to the virtual BITW device and/or configuring proxies, addresses, subnets, and/or routing tables, a virtual BITW device can process packets through the fast path and potentially improve performance accordingly. For example, the virtual BITW device may be configured to enforce a virtual path (comprising the fast path) through the virtual BITW device.
    Type: Application
    Filed: August 5, 2021
    Publication date: March 3, 2022
    Inventors: Richard Goodwin, Paul Sprague, Peter Geremia, Sean Moore
  • Publication number: 20210295276
    Abstract: An auto repair quote platform may be provided. The platform may allow a user to enter a set of parameters and request quotes from service providers based on those parameters. Service providers may also enter parameters for matching their quotes to a request. The platform may further allow a user to accept a quote and schedule an appointment with the chosen service provider.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Applicant: Top Brands Tire & Wheel dba Auto Repair Co.
    Inventors: Boake SELLS, Richard GOODWIN
  • Patent number: 11062275
    Abstract: An auto repair quote platform may be provided. The platform may allow a user to enter a set of parameters and request quotes from service providers based on those parameters. Service providers may also enter parameters for matching their quotes to a request. The platform may further allow a user to accept a quote and schedule an appointment with the chosen service provider.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 13, 2021
    Assignee: Top Brands Tire & Wheel
    Inventors: Boake Sells, Richard Goodwin
  • Publication number: 20200242567
    Abstract: An auto repair quote platform may be provided. The platform may allow a user to enter a set of parameters and request quotes from service providers based on those parameters. Service providers may also enter parameters for matching their quotes to a request. The platform may further allow a user to accept a quote and schedule an appointment with the chosen service provider.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Applicant: Top Brands Tire & Wheel dba Auto Repair Co.
    Inventors: Boake SELLS, Richard GOODWIN
  • Patent number: 10621557
    Abstract: An auto repair quote platform may be provided. The platform may allow a user to enter a set of parameters and request quotes from service providers based on those parameters. Service providers may also enter parameters for matching their quotes to a request. The platform may further allow a user to accept a quote and schedule an appointment with the chosen service provider.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: April 14, 2020
    Assignee: Top Brands Tire & Wheel
    Inventors: Boake Sells, Richard Goodwin