Patents by Inventor Richard Gottscho

Richard Gottscho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250053080
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: October 30, 2024
    Publication date: February 13, 2025
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 12217945
    Abstract: A sorption structure used in a plasma process chamber includes an inner layer having one or more heating elements to heat the sorption structure, a middle section having a lattice structure and a coolant flow delivery network through which a coolant circulates to cool the sorption structure, and a vacuum flow network that is connected to a vacuum line to create low pressure vacuum. The lattice structure includes network of openings defined in a plurality of layers. The inner layer is disposed adjacent to the middle section and an outer layer of the lattice structure faces an interior region of the chamber. The openings in the layers of the lattice structure progressively increase in size from the inner layer to the outer layer. The lattice structure is used to adsorb by-products released in the process chamber and the vacuum flow network is used to remove the by-products.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: February 4, 2025
    Assignee: Lam Research Corporation
    Inventors: Hossein Sadeghi, Richard A. Gottscho
  • Publication number: 20240419078
    Abstract: Development of resists are useful, for example, to form a patterning mask in the context of high-resolution patterning. Development can be accomplished using a halide-containing chemistry such as a hydrogen halide. A metal-containing resist film may be deposited on a semiconductor substrate using a dry or wet deposition technique. The resist film may be an EUV-sensitive organo-metal oxide or organo-metal-containing thin film resist. After exposure, the photopatterned metal-containing resist is developed using wet or dry development.
    Type: Application
    Filed: July 10, 2024
    Publication date: December 19, 2024
    Inventors: Samantha SiamHwa TAN, Jengyi YU, Da LI, Yiwen FAN, Yang PAN, Jeffrey MARKS, Richard A. GOTTSCHO, Daniel PETER, Timothy William WEIDMAN, Boris VOLOSSKIY, Wenbing YANG
  • Publication number: 20240361696
    Abstract: Development of resists are useful, for example, to form a patterning mask in the context of high-resolution patterning. Development can be accomplished using a halide-containing chemistry such as a hydrogen halide. A metal-containing resist film may be deposited on a semiconductor substrate using a dry or wet deposition technique. The resist film may be an EUV-sensitive organo-metal oxide or organo-metal-containing thin film resist. After exposure, the photopatterned metal-containing resist is developed using wet or dry development.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Inventors: Samantha SiamHwa TAN, Jengyi YU, Da LI, Yiwen FAN, Yang PAN, Jeffrey MARKS, Richard A. GOTTSCHO, Daniel PETER, Timothy William WEIDMAN, Boris VOLOSSKIY, Wenbing YANG
  • Patent number: 12105422
    Abstract: Development of resists are useful, for example, to form a patterning mask in the context of high-resolution patterning. Development can be accomplished using a halide-containing chemistry such as a hydrogen halide. A metal-containing resist film may be deposited on a semiconductor substrate using a dry or wet deposition technique. The resist film may be an EUV-sensitive organo-metal oxide or organo-metal-containing thin film resist. After exposure, the photopatterned metal-containing resist is developed using wet or dry development.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 1, 2024
    Assignee: Lam Research Corporation
    Inventors: Samantha Siamhwa Tan, Jengyi Yu, Da Li, Yiwen Fan, Yang Pan, Jeffrey Marks, Richard A. Gottscho, Daniel Peter, Timothy William Weidman, Boris Volosskiy, Wenbing Yang
  • Publication number: 20230273516
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 31, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Publication number: 20230266662
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 24, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Patent number: 11520953
    Abstract: Etch in a thermal etch reaction is predicted using a machine learning model. Chemical characteristics of an etch process and associated energies in one or more reaction pathways of a given thermal etch reaction are identified using a quantum mechanical simulation. Labels indicative of etch characteristics may be associated with the chemical characteristics and associated energies of the given thermal etch reaction. The machine learning model can be trained using chemical characteristics and associated energies as independent variables and labels as dependent variables across many different etch reactions of different types. When chemical characteristics and associated energies for a new thermal etch reaction are provided as inputs in the machine learning model, the machine learning model can accurately predict etch characteristics of the new thermal etch reaction as outputs.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: December 6, 2022
    Assignee: Lam Research Corporation
    Inventors: Thorsten Lill, Andreas Fischer, Ivan L. Berry, III, Nerissa Sue Draeger, Richard A. Gottscho
  • Publication number: 20220319821
    Abstract: A sorption structure defined in a plasma process chamber includes an inner layer having one or more heating elements to heat the sorption structure, a middle section having a coolant flow delivery network through which a coolant circulates to cool the sorption structure to a temperature to allow selective adsorption of by-products released in the process chamber, and a vacuum flow network that is connected to a vacuum line to create low pressure vacuum and remove the by-products released from the sorption structure. A lattice structure is defined over the middle section, the lattice structure includes network of openings defined in a plurality of layers to increase surface area for improved by-products adsorption. The inner section is disposed adjacent to the middle section. An outer layer of the lattice structure faces an interior region of the chamber.
    Type: Application
    Filed: August 6, 2020
    Publication date: October 6, 2022
    Inventors: Hossein Sadeghi, Richard A. Gottscho
  • Publication number: 20220270237
    Abstract: Defects on a substrate comprising electronic components can be classified with a computational defect analysis system that may be implemented in multiple stages. For example, a first stage classification engine may process metrology data to produce an initial classification of defects. A second stage classification engine may use the initial classification, along with manufacturing information and/or prior defect knowledge to output probabilities that the defects are caused by one or more potential sources.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 25, 2022
    Applicant: Lam Research Corporation
    Inventors: Kapil Sawlani, Richard A. Gottscho, Michal Danek, Keith Wells, Keith Hansen
  • Publication number: 20220244645
    Abstract: Development of resists are useful, for example, to form a patterning mask in the context of high-resolution patterning. Development can be accomplished using a halide-containing chemistry such as a hydrogen halide. A metal-containing resist film may be deposited on a semiconductor substrate using a dry or wet deposition technique. The resist film may be an EUV-sensitive organo-metal oxide or organo-metal-containing thin film resist. After exposure, the photopatterned metal-containing resist is developed using wet or dry development.
    Type: Application
    Filed: June 25, 2020
    Publication date: August 4, 2022
    Inventors: Samantha SiamHwa Tan, Jengyi Yu, Da Li, Yiwen Fan, Yang Pan, Jeffrey Marks, Richard A. Gottscho, Daniel Peter, Timothy William Weidman, Boris Volosskiy, Wenbing Yang
  • Publication number: 20220075260
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 10, 2022
    Applicant: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 11263737
    Abstract: Defects on a substrate comprising electronic components can be classified with a computational defect analysis system that may be implemented in multiple stages. For example, a first stage classification engine may process metrology data to produce an initial classification of defects. A second stage classification engine may use the initial classification, along with manufacturing information and/or prior defect knowledge to output probabilities that the defects are caused by one or more potential sources.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: March 1, 2022
    Assignee: Lam Research Corporation
    Inventors: Kapil Sawlani, Richard A. Gottscho, Michal Danek, Keith Wells, Keith Hansen
  • Patent number: 11209729
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 28, 2021
    Assignee: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10831096
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 10, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20200226742
    Abstract: Defects on a substrate comprising electronic components can be classified with a computational defect analysis system that may be implemented in multiple stages. For example, a first stage classification engine may process metrology data to produce an initial classification of defects. A second stage classification engine may use the initial classification, along with manufacturing information and/or prior defect knowledge to output probabilities that the defects are caused by one or more potential sources.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Inventors: Kapil Sawlani, Richard A. Gottscho, Michal Danek, Keith Wells, Keith Hansen
  • Publication number: 20200089104
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10585347
    Abstract: Disclosed are methods of generating a proximity-corrected design layout for photoresist to be used in an etch operation. The methods may include identifying a feature in an initial design layout, and estimating one or more quantities characteristic of an in-feature plasma flux (IFPF) within the feature during the etch operation. The methods may further include estimating a quantity characteristic of an edge placement error (EPE) of the feature by comparing the one or more quantities characteristic of the IFPF to those in a look-up table (LUT, and/or through application of a multivariate model trained on the LUT, e.g., constructed through machine learning methods (MLM)) which associates values of the quantity characteristic of EPE with values of the one or more quantities characteristics of the IFPF. Thereafter, the initial design layout may be modified based on at the determined quantity characteristic of EPE.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: March 10, 2020
    Assignee: Lam Research Corporation
    Inventors: Saravanapriyan Sriraman, Richard Wise, Harmeet Singh, Alex Paterson, Andrew D. Bailey, III, Vahid Vahedi, Richard A. Gottscho
  • Patent number: 10514598
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 24, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20190340316
    Abstract: Etch in a thermal etch reaction is predicted using a machine learning model. Chemical characteristics of an etch process and associated energies in one or more reaction pathways of a given thermal etch reaction are identified using a quantum mechanical simulation. Labels indicative of etch characteristics may be associated with the chemical characteristics and associated energies of the given thermal etch reaction. The machine learning model can be trained using chemical characteristics and associated energies as independent variables and labels as dependent variables across many different etch reactions of different types. When chemical characteristics and associated energies for a new thermal etch reaction are provided as inputs in the machine learning model, the machine learning model can accurately predict etch characteristics of the new thermal etch reaction as outputs.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 7, 2019
    Inventors: Thorsten Lill, Andreas Fischer, Ivan L. Berry, III, Nerissa Sue Draeger, Richard A. Gottscho