Patents by Inventor Richard Grote

Richard Grote has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130677
    Abstract: An optical sensing module suitable for wearable devices, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: a plurality of lasers, each laser of the plurality of lasers operating at a wavelength that is different from the wavelength of the others; an optical manipulation region, the optical manipulation region comprising one or more of: an optical modulator, optical multiplexer (MUX); and additional optical manipulation elements; and one or more optical outputs for light originating from the plurality of lasers.
    Type: Application
    Filed: August 3, 2023
    Publication date: April 25, 2024
    Inventors: Aaron John ZILKIE, Hooman ABEDIASL, Cristiano DALVI, Jeffrey DRISCOLL, Alexander GONDARENKO, Richard GROTE, Haydn Frederick JONES, Sean MERRITT, Roozbeh PARSA, Philip PEREA, Andrew George RICKMAN, Adam SCOFIELD, Guomin YU
  • Publication number: 20240041328
    Abstract: A minimally invasive spectrophotometric system. In some embodiments, the system includes a minimally invasive device and a spectrophotometer. The spectrophotometer may include: a transmitting fiber, a receiving fiber, and a head. The head of the spectrophotometer may include: a light source connected to the transmitting fiber and a photodetector connected to the receiving fiber. A portion of the transmitting fiber may be in an insertion tube of the minimally invasive device, and a portion of the receiving fiber may be in the insertion tube of the minimally invasive device. The head of the spectrophotometer may occupy a volume of less than 300 cubic centimeters.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 8, 2024
    Inventors: Paul Mannion, Kate LeeAnn Bechtel, Suresh Chengalva, Chia-Te Chou, Lok Man Chu, Craig Gardner, Alexander Gondarenko, Richard Grote, Vafa Jamali, Haydn Frederick Jones, Jennifer Lynn CORSO, Roozbeh Parsa, Kyle Rick, Aaron John Zilkie
  • Publication number: 20230400354
    Abstract: A photonic integrated circuit for use in hyperspectral spectroscopy. The photonic integrated circuit comprising: a multi-spectral laser source, configured to produce a multi-spectral optical signal; a modulator, the modulator configured to split the multi-spectral optical signal into a first component and a second component, and apply an up-chirp modulation profile to the first component and a down-chirp modulation profile to the second component; a first transmitter and receiver module, configured to transmit the modulated first component and receive reflections of the first component; and a second transmitter and receiver module, configured to transmit the modulated second component and receive reflections of the second component.
    Type: Application
    Filed: November 4, 2021
    Publication date: December 14, 2023
    Inventor: Richard GROTE
  • Publication number: 20230397818
    Abstract: A wearable device. In some embodiments, the wearable device includes: a sensing module; and a strap attached to the sensing module, the wearable device being configured to be worn by a user, with a lower surface of the sensing module in contact with the user, the strap extending over an upper surface of the sensing module.
    Type: Application
    Filed: August 16, 2023
    Publication date: December 14, 2023
    Inventors: Todd Andrew NEWHOUSE, Evan Einbender AAMODT, Hooman ABEDIASL, Adrian Williamson BAHANI, Kate LeeAnn BECHTEL, Renata Melamud BERGER, Patrick John CASTAGNA, Suresh CHENGALVA, Lok Man CHU, Jennifer Lynn CORSO, Cristiano DALVI, Jeffrey DRISCOLL, Alexander FAST, Craig GADD, Alexander GONDARENKO, Richard GROTE, Christopher Alan HARRIS, Vafa JAMALI, Haydn Frederick JONES, Vish KULKARNI, Ferdyan LESMANA, Sean MERRITT, Roozbeh PARSA, Philip PEREA, Kyle RICK, Andrew George RICKMAN, Adam SCOFIELD, Breanna STACHOWSKI, Benjamin VER STEEG, Guomin YU, Aaron John ZILKIE
  • Patent number: 11766216
    Abstract: An optical sensing module suitable for wearable devices, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: a plurality of lasers, each laser of the plurality of lasers operating at a wavelength that is different from the wavelength of the others; an optical manipulation region, the optical manipulation region comprising one or more of: an optical modulator, optical multiplexer (MUX); and additional optical manipulation elements; and one or more optical outputs for light originating from the plurality of lasers.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: September 26, 2023
    Assignee: Rockley Photonics Limited
    Inventors: Aaron John Zilkie, Hooman Abediasl, Cristiano Dalvi, Jeffrey Driscoll, Alexander Gondarenko, Richard Grote, Haydn Frederick Jones, Sean Merritt, Roozbeh Parsa, Philip Perea, Andrew George Rickman, Adam Scofield, Goumin Yu
  • Publication number: 20230277062
    Abstract: A sensor system for diffuse reflectance tissue monitoring, the sensor system comprising: one or more integrated photonic silicon or silicon nitride broadband transceiver circuits for multi-wavelength diffuse reflectance tissue monitoring, wherein the one or more transceiver circuits includes a transmitter photonic integrated circuit (PIC), the transmitter PIC comprising an optical phased array (OP A) the OP A comprising a steering mechanism to steer transmitted light across the tissue.
    Type: Application
    Filed: August 2, 2021
    Publication date: September 7, 2023
    Inventors: Cristiano Dalvi, Sean Merritt, Hooman Abediasl, Jeffrey Driscoll, Alexander Gondarenko, Richard Grote, Seiran Petikian, David Arlo Nelson
  • Publication number: 20230231356
    Abstract: There is provided a laser, and/or a reflector for a laser cavity comprising: a ring resonator structure; and a Fabry-Perot filter connected in cascade to the ring resonator structure by a coupling waveguide. The coupling waveguide is configured to propagate light having a frequency corresponding to any of the resonant frequencies of the ring resonator structure to the Fabry-Perot filter, and the Fabry-Perot filter is configured to select one or more frequencies and return light having a frequency matching any of the selected frequencies to the ring resonator structure via the coupling waveguide.
    Type: Application
    Filed: December 20, 2022
    Publication date: July 20, 2023
    Inventors: Sergio PINNA, Yi ZHANG, Richard GROTE
  • Patent number: 11686959
    Abstract: An optical instrument for determining a wavelength of light generated by a light source. The optical instrument may include a signal generator for generating a driving signal, a tunable optical filter device configured to receive the driving signal, the tunable optical filter device configured to diffract the light generated by the light source based on the driving signal, an optical detector device configured to detect a timing of maximum diffraction of light diffracted by the tunable optical filter device, and an analyzer configured to determine the wavelength of the light based the timing of maximum diffraction.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: June 27, 2023
    Assignee: Rockley Photonics Limited
    Inventors: Trevor Fowler, Richard Grote, Miguel Ángel Guillén-Torres, Caroline Lai, Haydn Frederick Jones
  • Publication number: 20230046152
    Abstract: The invention refers to a frequency shifter for heterodyne interferometry measurements, comprising a chip, an input waveguide configured to guide a light beam, at least four phase modulators, each being arranged to receive the light beam from the input waveguide and configured to modulate a phase of the light beam, an output combiner being arranged to let the light beams modulated by each phase modulator interfere, a first output waveguide coupled to the output combiner and configured to receive the modulated light beams constructively interfering at the output combiner, a second output waveguide coupled to the output combiner and configured to receive the modulated light beams destructively interfering at the output combiner, wherein the input waveguide, the phase modulators, the output combiner, the first output waveguide and the second output waveguide are arranged on the chip.
    Type: Application
    Filed: December 11, 2020
    Publication date: February 16, 2023
    Inventor: Richard GROTE
  • Publication number: 20230019946
    Abstract: The invention refers to an optical device for heterodyne interferometry, comprising a chip, a beam splitter, a first waveguide arranged on the chip, light propagating in the first waveguide being guided to the beam splitter, a second waveguide arranged on the chip, light propagating in the second waveguide being guided to and/or from the beam splitter, wherein the beam splitter, the first waveguide, and the second waveguide form part of a Michelson interferometer, wherein the first waveguide and the second waveguide at least partially form two arms of the Michelson interferometer, and wherein two further arms of the Michelson interferometer are at least partially arranged outside the chip.
    Type: Application
    Filed: December 11, 2020
    Publication date: January 19, 2023
    Inventors: Richard GROTE, Jeffrey DRISCOLL, Alexander GONDARENKO
  • Publication number: 20230003938
    Abstract: An optical sensing module suitable for wearable devices, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: a plurality of lasers, each laser of the plurality of lasers operating at a wavelength that is different from the wavelength of the others; an optical manipulation region, the optical manipulation region comprising one or more of: an optical modulator, optical multiplexer (MUX); and additional optical manipulation elements; and one or more optical outputs for light originating from the plurality of lasers.
    Type: Application
    Filed: December 11, 2020
    Publication date: January 5, 2023
    Inventors: Aaron John ZILKIE, Hooman ABEDIASL, Cristiano DALVI, Jeffrey DRISCOLL, Alexander GONDARENKO, Richard GROTE, Haydn Frederick JONES, Sean MERRITT, Roozbeh PARSA, Philip PEREA, Andrew George RICKMAN, Adam SCOFIELD, Goumin YU
  • Publication number: 20220370010
    Abstract: An optical sensing module suitable for wearable devices, the optical sensing module comprising: a silicon or silicon nitride transmitter photonic integrated circuit (PIC), the transmitter PIC comprising: a plurality of lasers, each laser of the plurality of lasers operating at a wavelength that is different from the wavelength of the others; an optical manipulation region, the optical manipulation region comprising one or more of: an optical modulator, optical multiplexer (MUX); and additional optical manipulation elements; and one or more optical outputs for light originating from the plurality of lasers.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 24, 2022
    Inventors: Aaron John ZILKIE, Hooman ABEDIASL, Cristiano DALVI, Jeffrey DRISCOLL, Alexander GONDARENKO, Richard GROTE, Haydn Frederick JONES, Sean MERRITT, Roozbeh PARSA, Philip PEREA, Andrew George RICKMAN, Adam SCOFIELD, Goumin YU
  • Publication number: 20220373829
    Abstract: An optical instrument for determining a wavelength of light generated by a light source. The optical instrument may include a signal generator for generating a driving signal, a tunable optical filter device configured to receive the driving signal, the tunable optical filter device configured to diffract the light generated by the light source based on the driving signal, an optical detector device configured to detect a timing of maximum diffraction of light diffracted by the tunable optical filter device, and an analyzer configured to determine the wavelength of the light based the timing of maximum diffraction.
    Type: Application
    Filed: June 3, 2022
    Publication date: November 24, 2022
    Inventors: Trevor FOWLER, Richard GROTE, Miguel Ángel GUILLÉN-TORRES, Caroline LAI, Haydn Frederick JONES
  • Publication number: 20220365380
    Abstract: The invention refers to an optical instrument for determining a wavelength of light generated by a light source, comprising a signal generator for generating a modulation signal, a tunable optical filter device configured to receive the modulation signal, the tunable optical filter device configured to modulate the light generated by the light source based on the modulation signal, an optical detector device configured to detect a degree of modulation of light modulated by the tunable optical filter device, and an analyser configured to determine the wavelength of the light based the degree of modulation.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 17, 2022
    Inventors: Trevor FOWLER, Richard GROTE, Miguel Ángel GUILLÉN-TORRES, Caroline LAI, Haydn Frederick JONES
  • Publication number: 20200164469
    Abstract: A laser is used to controllably generate and propagate cleaves to produce a cleaved surface along the {111} crystallographic plane in diamonds.
    Type: Application
    Filed: May 15, 2018
    Publication date: May 28, 2020
    Inventors: Lee Bassett, Samuel Parks, Richard Grote, David Hopper
  • Patent number: 10585243
    Abstract: Optical component and methods for forming optical components are described. The optical component includes a substrate having a base and a fin extending from the base, a buffer layer formed on the substrate leaving a portion of the fin exposed, and a confinement layer deposited over the buffer layer and the fin. The refractive index of the substrate is greater than the refractive index of the confinement layer, and the refractive index of the confinement layer is greater than the refractive index of the buffer layer.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 10, 2020
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Lee Bassett, Richard Grote
  • Publication number: 20180348431
    Abstract: Optical component and methods for forming optical components are described. The optical component includes a substrate having a base and a fin extending from the base, a buffer layer formed on the substrate leaving a portion of the fin exposed, and a confinement layer deposited over the buffer layer and the fin. The refractive index of the substrate is greater than the refractive index of the confinement layer, and the refractive index of the confinement layer is greater than the refractive index of the buffer layer.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 6, 2018
    Inventors: Lee Bassett, Richard Grote