Patents by Inventor Richard H. Fish

Richard H. Fish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040235084
    Abstract: Novel agents acting as co-factors for replacement of NAD(P)+/NAD(P)H co-enzyme systems in enzymatic oxido-reductive reactions. Agents mimicking the action of NAD(P)+/NAD(P)H system in enzymatic oxidation/reduction of substrates into reduced or oxidized products. A method for selection and preparation of the mimicking agents for replacement of NAD(P)+/NAD(P)H system and a device comprising co-factors for replacement of NAD(P)+/NAD(P)H system.
    Type: Application
    Filed: December 6, 2003
    Publication date: November 25, 2004
    Inventors: Richard H. Fish, John B. Kerr, H. Christine Lo
  • Patent number: 6716596
    Abstract: Novel agents acting as co-factors for replacement of NAD(P)+/NAD(P)H co-enzyme systems in enzymatic oxido-reductive reactions. Agents mimicking the action of NAD(P)+/NAD(P)H system in enzymatic oxidation/reduction of substrates into reduced or oxidized products. A method for selection and preparation of the mimicking agents for replacement of NAD(P)+/NAD(P)H system and a device comprising co-factors for replacement of NAD(P)+/NAD(P)H system.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: April 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Richard H. Fish, John B. Kerr, Christine H. Lo
  • Publication number: 20030022266
    Abstract: Novel agents acting as co-factors for replacement of NAD(P)+/NAD(P)H co-enzyme systems in enzymatic oxido-reductive reactions. Agents mimicking the action of NAD(P)+/NAD(P)H system in enzymatic oxidation/reduction of substrates into reduced or oxidized products. A method for selection and preparation of the mimicking agents for replacement of NAD(P)+/NAD(P)H system and a device comprising co-factors for replacement of NAD(P)+/NAD(P)H system.
    Type: Application
    Filed: March 12, 2001
    Publication date: January 30, 2003
    Inventors: Richard H. Fish, John B. Kerr, Christine H. Lo
  • Patent number: 5834525
    Abstract: The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: November 10, 1998
    Assignee: The Regents of the University of California
    Inventor: Richard H. Fish
  • Patent number: 5671086
    Abstract: An apparatus using electrophoresis provides accurate manipulation of an object on a microscope stage for further manipulations add reactions. The present invention also provides an inexpensive and easily accessible means to move an object without damage to the object. A plurality of electrodes are coupled to the stage in an array whereby the electrode array allows for distinct manipulations of the electric field for accurate manipulations of the object. There is an electrode array control coupled to the plurality of electrodes for manipulating the electric field. In an alternative embodiment, a chamber is provided on the stage to hold the object. The plurality of electrodes are positioned in the chamber, and the chamber is filled with fluid. The system can be automated using visual servoing, which manipulates the control parameters, i.e., x, y stage, applying the field, etc., after extracting the significant features directly from image data.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: September 23, 1997
    Assignee: The Regents, University of California
    Inventors: Bahram A. Parvin, Marcos F. Maestre, Richard H. Fish, William E. Johnston
  • Patent number: 5622996
    Abstract: The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+,Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: April 22, 1997
    Assignee: Regents of the University of California
    Inventor: Richard H. Fish
  • Patent number: 4659684
    Abstract: Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included.Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves:treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and,separating the solids from the liquid; and thentreating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and,separating the solids and liquids from each other.
    Type: Grant
    Filed: March 21, 1986
    Date of Patent: April 21, 1987
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard H. Fish
  • Patent number: 4604191
    Abstract: Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included.Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves:treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and,separating the solids from the liquid; and thentreating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and,separating the solids and liquids from each other.
    Type: Grant
    Filed: May 17, 1985
    Date of Patent: August 5, 1986
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard H. Fish
  • Patent number: 4552854
    Abstract: Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon.Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves:a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and,b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.
    Type: Grant
    Filed: February 8, 1985
    Date of Patent: November 12, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard H. Fish
  • Patent number: 4518490
    Abstract: Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon.Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves:a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and,b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.
    Type: Grant
    Filed: April 6, 1984
    Date of Patent: May 21, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Richard H. Fish