Patents by Inventor Richard H. Steeves

Richard H. Steeves has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8477898
    Abstract: One embodiment of the present invention provides a phase-locked loop (PLL) for synthesizing a fractional frequency. The PLL can include a 1/N frequency divider, a voltage-controlled oscillator (VCO), a programmable phase mixer, and a phase detector. The programmable phase mixer can be coupled between an output of the VCO and an input of the frequency divider, wherein the programmable phase mixer is configured to receive the output clock signal from the VCO and generate a first clock signal of frequency f1 by varying a phase of the output clock signal. The frequency divider is configured to receive the first clock signal from the programmable phase mixer and generate a second clock signal of frequency f2=f1/N. The phase detector can receive a reference clock signal and the second clock signal as inputs, and the phase detector's output can be used to generate the control voltage for the VCO.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Synopsys, Inc.
    Inventors: James P. Flynn, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin, Dino A. Toffolon, Jasjeet Singh
  • Patent number: 8208591
    Abstract: Systems and techniques for adapting and/or optimizing an equalizer of a receiver are described. The equalizer's behavior can be adjusted by modifying one or more equalization parameters. At the beginning of the adaptation and/or optimization process, the system can determine robust initial values for the one or more equalization parameters. The system can then adapt and/or optimize the equalizer by iteratively adjusting the one or more equalization parameters. Specifically, in each iteration, the system can use the receiver's clock and data recovery (CDR) circuitry to determine the number of early and late data transitions associated with one or more data patterns. Next, the system can adjust the one or more equalization parameters so that, for each data pattern in the one or more data patterns, the ratio between the number of early data transitions and the number of late data transitions is substantially equal to a desired value.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: June 26, 2012
    Assignee: Synopsys, Inc.
    Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
  • Patent number: 8184757
    Abstract: An on-die scope is described. The on-die scope can include one or more scope slicers, phase sweeping circuitry, voltage sweeping circuitry, and eye-diagram data collection circuitry. The clock and data recovery circuitry can receive an input signal, and output a recovered clock signal and a recovered bit-stream. The phase sweeping circuitry can receive the recovered clock signal, and output the scope clock signal by adding a phase offset to the recovered clock signal. A scope slicer can receive the voltage threshold, the scope clock signal, and the input signal, and output a scope bit-stream. The eye-diagram data collection circuitry can detect one or more bit-patterns in the recovered bit-stream, and modify values of one or more scope counters based solely or partly on the scope bit-stream and the recovered bit-stream.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 22, 2012
    Assignee: Synopsys, Inc.
    Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
  • Publication number: 20110310942
    Abstract: One embodiment of the present invention provides a phase-locked loop (PLL) for synthesizing a fractional frequency. The PLL can include a 1/N frequency divider, a voltage-controlled oscillator (VCO), a programmable phase mixer, and a phase detector. The programmable phase mixer can be coupled between an output of the VCO and an input of the frequency divider, wherein the programmable phase mixer is configured to receive the output clock signal from the VCO and generate a first clock signal of frequency f1 by varying a phase of the output clock signal. The frequency divider is configured to receive the first clock signal from the programmable phase mixer and generate a second clock signal of frequency f2=f1/N. The phase detector can receive a reference clock signal and the second clock signal as inputs, and the phase detector's output can be used to generate the control voltage for the VCO.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: SYNOPSYS, INC.
    Inventors: James P. Flynn, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin, Dino A. Toffolon, Jasjeet Singh
  • Publication number: 20110310947
    Abstract: Systems and techniques for adapting and/or optimizing an equalizer of a receiver are described. The equalizer's behavior can be adjusted by modifying one or more equalization parameters. At the beginning of the adaptation and/or optimization process, the system can determine robust initial values for the one or more equalization parameters. The system can then adapt and/or optimize the equalizer by iteratively adjusting the one or more equalization parameters. Specifically, in each iteration, the system can use the receiver's clock and data recovery (CDR) circuitry to determine the number of early and late data transitions associated with one or more data patterns. Next, the system can adjust the one or more equalization parameters so that, for each data pattern in the one or more data patterns, the ratio between the number of early data transitions and the number of late data transitions is substantially equal to a desired value.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: SYNOPSYS, INC.
    Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
  • Publication number: 20110311009
    Abstract: An on-die scope is described. The on-die scope can include one or more scope slicers, phase sweeping circuitry, voltage sweeping circuitry, and eye-diagram data collection circuitry. The clock and data recovery circuitry can receive an input signal, and output a recovered clock signal and a recovered bit-stream. The phase sweeping circuitry can receive the recovered clock signal, and output the scope clock signal by adding a phase offset to the recovered clock signal. A scope slicer can receive the voltage threshold, the scope clock signal, and the input signal, and output a scope bit-stream. The eye-diagram data collection circuitry can detect one or more bit-patterns in the recovered bit-stream, and modify values of one or more scope counters based solely or partly on the scope bit-stream and the recovered bit-stream.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: SYNOPSYS, INC.
    Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin