Patents by Inventor Richard J. Broman

Richard J. Broman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140081330
    Abstract: Modular spinal prosthesis having one of both of adaptable and configurable components are provided. The modular spinal prosthesis described herein provide an artificial articular configuration to replace damaged, worn or otherwise removed spinal facet elements. The prosthesis can include a crossbar having first and second ends. A first caudal prosthesis can be attached to the first end of the crossbar, while a second caudal prosthesis can be attached to the second end of the crossbar. A first crossbar mount can be positioned on the crossbar near the first caudal prosthesis, while a second crossbar mount can be positioned on the crossbar near the second caudal prosthesis. A first cephalad prosthesis can extend from the first crossbar mount, while a second cephalad prosthesis can extend from the second crossbar mount.
    Type: Application
    Filed: March 20, 2013
    Publication date: March 20, 2014
    Inventors: Mark Kuiper, David Yager, Leonard Tokish, JR., David Michael Rosler, Mark A. Reiley, Susan L. Rogers, Christopher Ralph, Mark Charbonneau, Richard J. Broman, David Stinson
  • Patent number: 8675930
    Abstract: The present invention provides tools and methods designed to aid in the placement of artificial facet joints at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing an artificial cephalad facet joint including a fixation measurement element and a support arm element. This measurement tool assists in the selection and/or configuration of an artificial cephalad facet joint for implantation in a patient. Another aspect is a measurement tool for installing a caudad facet joint including a stem element and a trial caudad bearing surface element. This measurement tool assists in the selection and/or configuration of a caudad facet joint for implantation in a patient. Yet another aspect is a measurement tool holder including a measurement surface connected to a holder element. This tool holder assists in determining the measurements obtained with the caudad facet joint measurement tool.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: March 18, 2014
    Assignee: GMEDELAWARE 2 LLC
    Inventors: Michael J. Funk, Thomas J. McLeer, Teena M. Augostino, Richard J. Broman, Leonard J. Tokish, Jr.
  • Publication number: 20140058448
    Abstract: The invention discloses methods, devices, systems and kits for repairing, replacing and/or augmenting natural facet joint surfaces and/or facet capsules. An implantable facet joint device of one embodiment comprises a cephalad facet joint element and a caudal facet joint element. The cephalad facet joint element includes a member adapted to engage a first vertebra, and an artificial cephalad bearing member. The caudal facet joint element includes a connector adapted for fixation to a second vertebra at a fixation point and an artificial caudal bearing member adapted to engage the cephalad bearing member. The artificial caudal bearing member is adapted for a location lateral to the fixation point.
    Type: Application
    Filed: June 26, 2013
    Publication date: February 27, 2014
    Inventors: Phillip Berg, John Arthur Ohrt, Cin Abidin, Mark K. Kuiper, Michael J. Funk, Anthony V. Finazzo, Christopher Ralph, Richard J. Broman, Sean Sung-Ho Suh
  • Patent number: 8496686
    Abstract: The invention discloses methods, devices, systems and kits for repairing, replacing and/or augmenting natural facet joint surfaces and/or facet capsules. An implantable facet joint device of one embodiment comprises a cephalad facet joint element and a caudal facet joint element. The cephalad facet joint element includes a member adapted to engage a first vertebra, and an artificial cephalad bearing member. The caudal facet joint element includes a connector adapted for fixation to a second vertebra at a fixation point and an artificial caudal bearing member adapted to engage the cephalad bearing member. The artificial caudal bearing member is adapted for a location lateral to the fixation point.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: July 30, 2013
    Assignee: Gmedelaware 2 LLC
    Inventors: Phillip Berg, John Arthur Ohrt, Cin Abidin, Mark K. Kuiper, Michael J. Funk, Anthony V. Finazzo, Christopher Ralph, Richard J. Broman, Sean Sung-Ho Suh
  • Publication number: 20130030466
    Abstract: An adaptable spinal facet joint prosthesis, including a pedicle fixation element; a laminar fixation element; and a facet joint bearing surface having a location adaptable with respect at least one of the pedicle fixation element and the laminar fixation element. The invention also includes a method of implanting an adaptable spinal facet joint prosthesis including the steps of determining a desired position for a facet joint bearing surface; and attaching a prosthesis comprising a facet joint bearing surface to a pedicle portion of a vertebra and a lamina portion of a vertebra to place the facet joint bearing surface in the desired position. The invention also provides a facet joint prosthesis implant tool including a tool guide adapted to guide a vertebra cutting tool; and first and second fixation hole alignment elements extending from the saw guide.
    Type: Application
    Filed: June 14, 2012
    Publication date: January 31, 2013
    Inventors: Mark K. Kuiper, David Yager, Leonard Tokish, JR., David Michael Rosler, Mark A. Reiley, Michael J. Funk, Jorge A. Ochoa, Susan L. Rogers, Christopher R. Ralph, Mark T. Charbonneau, Richard J. Broman, Thomas J. McLeer
  • Patent number: 8221461
    Abstract: An adaptable spinal facet joint prosthesis, including a pedicle fixation element; a laminar fixation element; and a facet joint bearing surface having a location adaptable with respect at least one of the pedicle fixation element and the laminar fixation element. The invention also includes a method of implanting an adaptable spinal facet joint prosthesis including the steps of determining a desired position for a facet joint bearing surface; and attaching a prosthesis comprising a facet joint bearing surface to a pedicle portion of a vertebra and a lamina portion of a vertebra to place the facet joint bearing surface in the desired position. The invention also provides a facet joint prosthesis implant tool including a tool guide adapted to guide a vertebra cutting tool; and first and second fixation hole alignment elements extending from the saw guide. The invention also provides systems for treating spinal pathologies that include intervertebral discs in combination with spinal and facet joint prostheses.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: July 17, 2012
    Assignee: GMEDelaware 2 LLC
    Inventors: Mark K. Kuiper, David Yager, Leonard Tokish, Jr., David Michael Rosler, Mark A. Reiley, Michael J. Funk, Jorge A. Ochoa, Susan L. Rogers, Christopher R. Ralph, Mark T. Charbonneau, Richard J. Broman, Thomas J. McLeer
  • Publication number: 20080292161
    Abstract: The present invention provides tools and methods designed to aid in the placement of artificial facet joints at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing an artificial cephalad facet joint including a fixation measurement element and a support arm element. This measurement tool assists in the selection and/or configuration of an artificial cephalad facet joint for implantation in a patient. Another aspect is a measurement tool for installing a caudad facet joint including a stem element and a trial caudad bearing surface element. This measurement tool assists in the selection and/or configuration of a caudad facet joint for implantation in a patient. Yet another aspect is a measurement tool holder including a measurement surface connected to a holder element. This tool holder assists in determining the measurements obtained with the caudad facet joint measurement tool.
    Type: Application
    Filed: August 5, 2008
    Publication date: November 27, 2008
    Inventors: Michael J. Funk, Thomas J. McLeer, Teena M. Augostino, Richard J. Broman, Leonard J. Tokish, JR.
  • Publication number: 20080287959
    Abstract: The present invention provides tools and methods designed to aid in the placement of artificial facet joints at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing an artificial cephalad facet joint, the tool including a trial marker having a portion configured to be placed in a hole; and a trial body comprising a bore therethrough for slidaby receiving a portion of the trial marker. In some embodiments, the trial body further comprises an arm extending generally radially outward from the bore and configured to contact an opposing spinal prosthesis component. The trial body may further comprise a lower portion configured to be placed in the hole. The trial marker and the trial body are configured to cooperate to indicate a relative positioning between them. This measurement tool assists in the selection and/or configuration of an artificial cephalad facet joint for implantation in a patient.
    Type: Application
    Filed: April 7, 2008
    Publication date: November 20, 2008
    Applicant: Archus Orthopedics, Inc.
    Inventors: Matthew M. Quest, Leonard J. Tokish, JR., Michael J. Funk, Thomas J. McLeer, Teena M. Augostino, Richard J. Broman
  • Publication number: 20080249568
    Abstract: An adaptable spinal facet joint prosthesis, including a pedicle fixation element; a laminar fixation element; and a facet joint bearing surface having a location adaptable with respect at least one of the pedicle fixation element and the laminar fixation element. The invention also includes a method of implanting an adaptable spinal facet joint prosthesis including the steps of determining a desired position for a facet joint bearing surface; and attaching a prosthesis comprising a facet joint bearing surface to a pedicle portion of a vertebra and a lamina portion of a vertebra to place the facet joint bearing surface in the desired position. The invention also provides a facet joint prosthesis implant tool including a tool guide adapted to guide a vertebra cutting tool; and first and second fixation hole alignment elements extending from the saw guide. The invention also provides systems for treating spinal pathologies that include intervertebral discs in combination with spinal and facet joint prostheses.
    Type: Application
    Filed: October 24, 2005
    Publication date: October 9, 2008
    Inventors: Mark K. Kuiper, David Yager, Leonard Tokish, David Michael Rosler, Mark A. Reiley, Michael J. Funk, Jorge A. Ochoa, Susan L. Rogers, Christopher R. Ralph, Mark T. Charbonneau, Richard J. Broman, Thomas J. McLeer
  • Patent number: 7406775
    Abstract: The present invention provides tools and methods designed to aid in the placement of artificial facet joints at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing an artificial cephalad facet joint including a fixation measurement element and a support arm element. This measurement tool assists in the selection and/or configuration of an artificial cephalad facet joint for implantation in a patient. Another aspect is a measurement tool for installing a caudad facet joint including a stem element and a trial caudad bearing surface element. This measurement tool assists in the selection and/or configuration of a caudad facet joint for implantation in a patient. Yet another aspect is a measurement tool holder including a measurement surface connected to a holder element. This tool holder assists in determining the measurements obtained with the caudad facet joint measurement tool.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: August 5, 2008
    Assignee: Archus Orthopedics, Inc.
    Inventors: Michael J. Funk, Thomas J. McLeer, Teena M. Augostino, Richard J. Broman, Leonard J. Tokish, Jr.
  • Publication number: 20080119845
    Abstract: A method and system for removing a portion of an artificial facet from a vertebra, and an adapter within the system that allows ultrasonic energy and extraction forces to be transmitted therethrough are provided. The method includes attaching an adapter to an ultrasonic waveguide and to a stem cemented into a vertebra, and applying ultrasonic energy and extraction force from the waveguide through the adapter to the stem. The system includes a handset that delivers ultrasonic energy, a waveguide attached to the handset to receive the energy therefrom, and an adapter attached to the waveguide to receive the energy therefrom. The adapter includes a first section attaching the adapter to the ultrasonic waveguide, and a second section attaching the adapter to a portion of the artificial facet joint having a stem embedded in a vertebra, the sections of the adapter transmitting energy and forces from the waveguide through the adapter to the attached stem.
    Type: Application
    Filed: September 25, 2007
    Publication date: May 22, 2008
    Applicant: ARCHUS ORTHOPEDICS, INC.
    Inventors: Martha K. Stone, Sean Sung-Ho Suh, Richard J. Broman, Anton Alferness, Anthony V. Finazzo, Mark T. Charbonneau, Leonard J. Tokish
  • Publication number: 20080082171
    Abstract: An adaptable spinal facet joint prosthesis, including a pedicle fixation element; a laminar fixation element; and a facet joint bearing surface having a location adaptable with respect at least one of the pedicle fixation element and the laminar fixation element. The invention also includes a method of implanting an adaptable spinal facet joint prosthesis including the steps of determining a desired position for a facet joint bearing surface; and attaching a prosthesis comprising a facet joint bearing surface to a pedicle portion of a vertebra and a lamina portion of a vertebra to place the facet joint bearing surface in the desired position. The invention also provides a facet joint prosthesis implant tool including a tool guide adapted to guide a vertebra cutting tool; and first and second fixation hole alignment elements extending from the saw guide. The invention also provides systems for treating spinal pathologies that include intervertebral discs in combination with spinal and facet joint prostheses.
    Type: Application
    Filed: April 25, 2007
    Publication date: April 3, 2008
    Inventors: Mark K. Kuiper, David Yager, Leonard Tokish, David Michael Rosler, Mark A. Reiley, Michael J. Funk, Jorge A. Ochoa, Susan L. Rogers, Christopher R. Ralph, Mark T. Charbonneau, Richard J. Broman, Thomas J. McLeer
  • Patent number: 7290347
    Abstract: The present invention provides tools and methods designed to aid in the placement of facet joint prostheses at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing a cephalad facet joint prosthesis including a fixation measurement element and a support arm element. This measurement tool assists in the selection and/or configuration of a cephalad facet joint prosthesis for implantation in a patient. Another aspect is a measurement tool for installing a caudal facet joint prosthesis including a stem element and a trial caudal bearing surface element. This measurement tool assists in the selection and/or configuration of a caudal facet joint prosthesis for implantation in a patient. Yet another aspect is a measurement tool holder including a measurement surface connected to a holder element. This tool holder assists in determining the measurements obtained with the caudal facet joint prosthesis measurement tool.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 6, 2007
    Assignee: Archus Orthopedics, Inc.
    Inventors: Teena M. Augostino, Richard J. Broman, Leonard Tokish, Jr.
  • Patent number: 7179262
    Abstract: The invention relates to a technique for precisely locating a line containing a predetermined point within the surgical site using a series of levels and plumb lines and internal anatomical features of the surgical site, using this location to precisely position and temporarily affix a site preparation scaffold relative to the patient's anatomy so that site preparation instruments can be introduced into the site at precise locations governed by the scaffold geometry and patient anatomy. This precise positioning of the scaffold also provides a way for the surgeon to use patient anatomical features to reliably and precisely prepare the surgical site. Scaffolds having angling features further increase the precise preparation of the surgical site. This increased precision in site preparation increases the probability of a successful procedure, and decreases the likelihood that additional surgery may be needed.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 20, 2007
    Assignee: SDGI Holdings, Inc.
    Inventors: Vincent Bryan, Alex Kunzler, Robert Conta, Randy Allard, Richard J. Broman, Anthony Finazzo, Carlos Gil, Jeffrey Rouleau, Leonard Tokish, David Yager
  • Patent number: 7051451
    Abstract: The present invention provides tools and methods designed to aid in the placement of facet joint prosthesis at virtually all spinal levels. One aspect of the present invention is a measurement tool for installing a cephalad facet joint prosthesis including a fixation measurement element and a support arm element. This measurement tool assists in the selection and/or configuration of a cephalad facet joint prosthesis for implantation in a patient. Another aspect is a measurement tool for installing a caudal facet joint prosthesis including a stem element and a trial caudal bearing surface element. This measurement tool assists in the selection and/or configuration of a caudal facet joint prosthesis for implantation in a patient. Yet another aspect is a measurement tool holder including a measurement surface connected to a holder element. This tool holder assists in determining the measurements obtained with the caudal facet joint prosthesis measurement tool.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: May 30, 2006
    Assignee: Archus Orthopedics, Inc.
    Inventors: Teena M. Augostino, Richard J. Broman, Leonard Tokish, Jr.
  • Patent number: 6949105
    Abstract: The invention relates to a technique for precisely locating a line containing a predetermined point within the surgical site using a series of levels and plumb lines and internal anatomical features of the surgical site, using this location to precisely position and temporarily affix a site preparation scaffold relative to the patient's anatomy so that site preparation instruments can be introduced into the site at precise locations governed by the scaffold geometry and patient anatomy. This precise positioning of the scaffold also provides a way for the surgeon to use patient anatomical features to reliably and precisely prepare the surgical site. Scaffolds having angling features further increase the precise preparation of the surgical site. This increased precision in site preparation increases the probability of a successful procedure, and decreases the likelihood that additional surgery may be needed.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: September 27, 2005
    Assignee: SDGI Holdings, Inc.
    Inventors: Vincent Bryan, Alex Kunzler, Robert Conta, Randy Allard, Richard J. Broman, Anthony Finazzo, Carlos E. Gil, Jeffrey P. Rouleau, Leonard Tokish, Jr., David Yager
  • Publication number: 20020161446
    Abstract: The invention relates to a technique for precisely locating a line containing a predetermined point within the surgical site using a series of levels and plumb lines and internal anatomical features of the surgical site, using this location to precisely position and temporarily affix a site preparation scaffold relative to the patient's anatomy so that site preparation instruments can be introduced into the site at precise locations governed by the scaffold geometry and patient anatomy. This precise positioning of the scaffold also provides a way for the surgeon to use patient anatomical features to reliably and precisely prepare the surgical site. Scaffolds having angling features further increase the precise preparation of the surgical site. This increased precision in site preparation increases the probability of a successful procedure, and decreases the likelihood that additional surgery may be needed.
    Type: Application
    Filed: August 7, 2001
    Publication date: October 31, 2002
    Inventors: Vincent Bryan, Alex Kunzler, Robert Conta, Randy Allard, Richard J. Broman, Anthony Finazzo, Carlos E. Gil, Jeffrey P. Rouleau, Leonard Tokish