Patents by Inventor Richard J. Casler, Jr.

Richard J. Casler, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230398001
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: June 2, 2023
    Publication date: December 14, 2023
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Publication number: 20230380995
    Abstract: Knee orthoses or prostheses can be used to automatically, when appropriate, initiate a stand-up sequence based on the position of a person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to a position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
    Type: Application
    Filed: May 30, 2023
    Publication date: November 30, 2023
    Inventors: Hugh M. Herr, Richard J. Casler, JR.
  • Patent number: 11707364
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for Reflex Parameter Modulation a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: July 25, 2023
    Assignee: Otto Bock Healthcare LP
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, Jr.
  • Patent number: 11701244
    Abstract: Knee orthoses or prostheses can be used to automatically, when appropriate, initiate a stand-up sequence based on the position of a person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to a position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: July 18, 2023
    Assignee: Otto Bock Healthcare LP
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr.
  • Publication number: 20230165693
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: November 23, 2022
    Publication date: June 1, 2023
    Inventors: Richard J. Casler, JR., Hugh M. Herr
  • Publication number: 20230166263
    Abstract: Improved sub-assemblies and methods of control for use in a diagnostic assay system adapted to receive an assay cartridge are provided herein. Such sub-assemblies include: a brushless DC motor, a door opening/closing mechanism and cartridge loading mechanism, a syringe and valve drive mechanism assembly, a sonication horn, a thermal control device and optical detection/excitation device. Such systems can further include a communications unit configured to wirelessly communicate with a mobile device of a user so as to receive a user input relating to functionality of the system with respect to an assay cartridge received therein and relaying a diagnostic result relating to the assay cartridge to the mobile device.
    Type: Application
    Filed: November 11, 2022
    Publication date: June 1, 2023
    Inventors: Douglas B. Dority, Tien Phan, David Fromm, Richard J. Casler, JR., Dustin Dickens, Stuart Morita, Matthew Piccini
  • Publication number: 20230055359
    Abstract: Systems and methods for monitoring, characterizing and controlling operation of LEDs are provided herein. Methods includes measuring a voltage across the LED, and correlating the voltage to a junction temperature of the LED. This correlation can be used to improve operation of the LED by increasing the signal to noise ratio of the LED signal, characterize the LED by comparing to an I-V curve, control LED operation to compensate for LED degradation and avoid crosstalk, and/or to generally improve performance and life expectancy of the LED. Improved performance of the LED can include stabilizing the photon output during performance of an assay to provide a desired dye reporter signal required for the assay and/or reducing an intra-shot during of the LED output during the assay. System and device with control units configured to perform these methods are also described herein.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 23, 2023
    Inventors: Amish Shah, Marissa Lee, Jessica Koay, Richard J Casler, JR.
  • Patent number: 11529247
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: December 20, 2022
    Assignee: Otto Bock Healthcare LP
    Inventors: Richard J. Casler, Jr., Hugh M. Herr
  • Patent number: 11524301
    Abstract: Improved sub-assemblies and methods of control for use in a diagnostic assay system adapted to receive an assay cartridge are provided herein. Such sub-assemblies include: a brushless DC motor, a door opening/closing mechanism and cartridge loading mechanism, a syringe and valve drive mechanism assembly, a sonication horn, a thermal control device and optical detection/excitation device. Such systems can further include a communications unit configured to wirelessly communicate with a mobile device of a user so as to receive a user input relating to functionality of the system with respect to an assay cartridge received therein and relaying a diagnostic result relating to the assay cartridge to the mobile device.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: December 13, 2022
    Assignee: Cepheid
    Inventors: Douglas B Dority, Tien Phan, David Fromm, Richard J. Casler, Jr., Dustin Dickens, Stuart Morita, Matthew Piccini
  • Publication number: 20220253079
    Abstract: Thermal control devices and methods to provide improved control, speed and efficiency in temperature cycling are provided herein. Such thermal control device and methods can include one or more active elements, such a thermoelectric cooler device, that is controlled by an algorithm that regulates a temperature distribution of an adjacent reaction-vessel according to a temperature distribution command trajectory and estimated reaction-vessel temperature distribution. Some embodiments include two active elements that are bilaterally applied to opposing sides of the reaction-vessel. In some embodiments, the estimated reaction-vessel temperature is determined based on a state of power electronics of the element and a temperature output of one or more sensors of a portion of the element and/or an ambient environment of the reaction-vessel. Methods of calibration of such systems utilizing a thermal calibrator as a proxy for the reaction-vessel are also provided herein.
    Type: Application
    Filed: January 13, 2022
    Publication date: August 11, 2022
    Inventors: Marissa Lee, Jessica Koay, Charles Rohrs, Earl Solis, Matthew Piccini, Richard J. Casler, JR.
  • Publication number: 20220224259
    Abstract: A DC electric motor having a stator mounted to a substrate, the stator having a coil assembly having a magnetic core, a rotor mounted to the stator with permanent magnets distributed radially about the rotor, the permanent magnets extending beyond the magnetic core, and sensors mounted to the substrate adjacent the permanent magnets. During operation of the motor passage of the permanent magnets over the sensors produces a substantially sinusoidal signal of varying voltage substantially without noise and/or saturation, allowing an angular position of the rotor to be determined from the sinusoidal signals by utilizing a transformation matrix or piece-wise algorithm applied in substantially linear portions of the sinusoidal signals without requiring use of additional hardware encoder or position sensors and without requiring noise-reduction or filtering of the signal.
    Type: Application
    Filed: January 13, 2022
    Publication date: July 14, 2022
    Inventors: Jeffrey Davis, Rajesh Nerkar, Richard J. Casler, JR.
  • Patent number: 11026815
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. A controller determines a desired torque based on the output, and controls the motor's torque based on the determined desired torque.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 8, 2021
    Assignee: OTTO BOCK HEALTHCARE LP
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon
  • Publication number: 20210093470
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, JR., Matthew J. Carty
  • Patent number: 10898351
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 26, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, Jr., Matthew J. Carty
  • Publication number: 20200146847
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for Reflex Parameter Modulation a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Publication number: 20200085599
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Applicant: BionX Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10531965
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 14, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, Jr.
  • Patent number: 10485682
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: November 26, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Publication number: 20190328552
    Abstract: Knee orthoses or prostheses can be used to automatically, when appropriate, initiate a stand-up sequence based on the position of a person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to a position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
    Type: Application
    Filed: May 8, 2019
    Publication date: October 31, 2019
    Inventors: Hugh Miller Herr, Richard J. Casler, JR.
  • Patent number: 10406002
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: September 10, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow