Patents by Inventor Richard J. Casler

Richard J. Casler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9474634
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, Jr., Matthew J. Carty
  • Publication number: 20160235557
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Inventors: Hugh Miller Herr, Richard J. Casler, Zhixiu Han
  • Patent number: 9351856
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 31, 2016
    Assignee: IWALK, INC.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han
  • Publication number: 20150173918
    Abstract: At least partial function of a human limb is restored by surgically removing at least a portion of an injured or diseased human limb from a surgical site of an individual and transplanting a selected muscle into the remaining biological body of the individual, followed by contacting the transplanted selected muscle, or an associated nerve, with an electrode, to thereby control a device, such as a prosthetic limb, linked to the electrode. Simulating proprioceptive sensory feedback from a device includes mechanically linking at least one pair of agonist and antagonist muscles, wherein a nerve innervates each muscle, and supporting each pair with a support, whereby contraction of the agonist muscle of each pair will cause extension of the paired antagonist muscle. An electrode is implanted in a muscle of each pair and electrically connected to a motor controller of the device, thereby simulating proprioceptive sensory feedback from the device.
    Type: Application
    Filed: October 22, 2014
    Publication date: June 25, 2015
    Inventors: Hugh M. Herr, Ronald R. Riso, Katherine W. Song, Richard J. Casler, JR., Matthew J. Carty
  • Patent number: 9060883
    Abstract: In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: June 23, 2015
    Assignee: iWalk, Inc.
    Inventors: Hugh M. Herr, Jeff A. Weber, David A. Garlow, Richard J. Casler, Jr.
  • Publication number: 20150127118
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: June 12, 2013
    Publication date: May 7, 2015
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Patent number: 8900325
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: December 2, 2014
    Assignee: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han
  • Publication number: 20140296997
    Abstract: In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 2, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Christopher Williams, Christopher Eric Barnhart, Zhixiu Han, Charles E. Rohrs, Richard J. Casler, JR.
  • Publication number: 20140121782
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 1, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Publication number: 20140114437
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon
  • Publication number: 20140088727
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: iWalk, Inc.
    Inventors: Zhixiu Han, Christopher Eric Barnhart, David Adams Garlow, Adrienne Bolger, Hugh Miller Herr, Gary Girzon, Richard J. Casler, JR., Jennifer T. McCarthy
  • Publication number: 20140081420
    Abstract: Knee orthoses or prostheses can be used to automatically when it is appropriate to initiate a stand-up sequence based on the position of the person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 20, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR.
  • Publication number: 20140081424
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 20, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han
  • Publication number: 20140081421
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 20, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han
  • Patent number: 8310195
    Abstract: Methods and systems for, in one embodiment, accelerating a stage through a clearance height in a first direction and decelerating the stage in the first direction while accelerating in a second direction are shown. The stage is moved in a third direction and a determination is made whether the stage movement in the second direction is below a threshold value before continuing to move the stage further in the third direction. The first direction is perpendicular to the second direction and is parallel and opposite to the third direction.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: November 13, 2012
    Assignee: FormFactor, Inc.
    Inventors: Sun Yalei, Uday Nayak, Richard J. Casler, Jr., Thomas Rohrs
  • Publication number: 20120283845
    Abstract: In a powered actuator for supplying torque, joint equilibrium, and/or impedance to a joint, a motor is directly coupled to a low-reduction ratio transmission, e.g., a transmission having a gear ratio less than about 80 to 1. The motor has a low dissipation constant, e.g., less than about 50 W/(Nm)2. The transmission is serially connected to an elastic element that is also coupled to the joint, thereby supplying torque, joint equilibrium, and/or impedance to the joint while minimizing the power consumption and/or acoustic noise of the actuator.
    Type: Application
    Filed: March 12, 2012
    Publication date: November 8, 2012
    Inventors: Hugh M. Herr, Jeff A. Weber, David A. Garlow, Richard J. Casler, JR.
  • Publication number: 20120259431
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: January 23, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher Williams, Jeff A. Weber, Christopher E. Barnhart, Hugh M. Herr, Richard J. Casler, JR.
  • Publication number: 20120259430
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher E. Barnhart, David A. Garlow, Adrienne Bolger, Hugh M. Herr, Gary Girzon, Richard J. Casler, JR., Jennifer T. McCarthy
  • Publication number: 20120259429
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Application
    Filed: January 10, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher E. Barnhart, Hugh M. Herr, Christopher Williams, Jeff A. Weber, Richard J. Casler, JR.
  • Publication number: 20120146569
    Abstract: Methods and systems for, in one embodiment, accelerating a stage through a clearance height in a first direction and decelerating the stage in the first direction while accelerating in a second direction are shown. The stage is moved in a third direction and a determination is made whether the stage movement in the second direction is below a threshold value before continuing to move the stage further in the third direction. The first direction is perpendicular to the second direction and is parallel and opposite to the third direction.
    Type: Application
    Filed: February 15, 2012
    Publication date: June 14, 2012
    Inventors: Sun Yalei, Uday Nayak, Richard J. Casler, JR., Thomas Rohrs