Patents by Inventor Richard J. Futch

Richard J. Futch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8363679
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of Ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each has guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. As a local network, the architecture supports guaranteed bandwidth for delivery of data flows to a plurality of host devices.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: January 29, 2013
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 8107814
    Abstract: Upstream data handling in a digital Data Over Cable Service Interface Specification (DOCSIS) passive optical network (DPON). Embodiments include receiving at a headend, in an upstream path over an optical network, a plurality of digitized and serialized DPON upstream packets respectively distributed in a time division multiplexed fashion, wherein each DPON upstream packet includes a header, a trailer and a payload, monitoring the optical network for energy in the upstream path, including energy associated with a header and a trailer of respective DPON upstream packets, controlling a bit stuffer that adds bits to the upstream path to (1) stop adding bits to the upstream path when energy is detected in the upstream path and (2) resume adding bits to the upstream path after an end of a trailer of a given DPON upstream packet has been detected, and removing the header and the trailer of the respective DPON upstream packets.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 31, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Thai-Bao H. Kien, Amin Farvez, Richard J. Futch, Richard T. Causey, Michael Jones
  • Patent number: 7965722
    Abstract: Multiplexing of information from a plurality of information flows into fixed-length packets such as, but not limited to, MPEG packets allows efficient utilization of bandwidth and also can be used to reduce transmission latency. In addition, utilizing MPEG packets and transport streams for octet multiplexing allows the packets carrying octet-multiplexed data to easily be integrated with other MPEG packets for other services that are commonly found in cable transmission networks of all coax, hybrid fiber coax, and/or all fiber. The multiplexing/demultiplexing of octets using MPEG packets generally is described by mappings that specify the use of octets in MPEG packets. Changes to allocations in a map generally should be propagated in a way that reliably ensures that both the transmitter and receiver have a consistent view of the octet mappings.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 21, 2011
    Inventors: Richard J. Futch, Thai-Bao H. Kien, Bin Yang, Christopher J. Topazi
  • Patent number: 7933288
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 26, 2011
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7801119
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: September 21, 2010
    Assignee: Scientific-Atlanta, LLC
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7729379
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Each downstream data flow is fragmented into individual octets that are multiplexed into MPEG packets. An MPEG packet may carry the octets for a plurality of individual data flows. Furthermore, the MPEG packets may be frequency-division multiplexed across and may be contemporaneously communicated over a plurality of frequency channels. Also, the octets from a data flow do not necessarily have to use consecutive octets in an MPEG packet. Instead, consecutive octets in an MPEG packet may carry information for two different data flows.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: June 1, 2010
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Donald C. Sorenson, Richard J. Futch
  • Publication number: 20100021172
    Abstract: Upstream data handling in a digital Data Over Cable Service Interface Specification (DOCSIS) passive optical network (DPON). Embodiments include receiving at a headend, in an upstream path over an optical network, a plurality of digitized and serialized DPON upstream packets respectively distributed in a time division multiplexed fashion, wherein each DPON upstream packet includes a header, a trailer and a payload, monitoring the optical network for energy in the upstream path, including energy associated with a header and a trailer of respective DPON upstream packets, controlling a bit stuffer that adds bits to the upstream path to (1) stop adding bits to the upstream path when energy is detected in the upstream path and (2) resume adding bits to the upstream path after an end of a trailer of a given DPON upstream packet has been detected, and removing the header and the trailer of the respective DPON upstream packets.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Thai-Bao H. Kien, Amin Farvez, Richard J. Futch, Richard T. Causey, Michael Jones
  • Publication number: 20090323713
    Abstract: Multiplexing of information from a plurality of information flows into fixed-length packets such as, but not limited to, MPEG packets allows efficient utilization of bandwidth and also can be used to reduce transmission latency. In addition, utilizing MPEG packets and transport streams for octet multiplexing allows the packets carrying octet-multiplexed data to easily be integrated with other MPEG packets for other services that are commonly found in cable transmission networks of all coax, hybrid fiber coax, and/or all fiber. The multiplexing/demultiplexing of octets using MPEG packets generally is described by mappings that specify the use of octets in MPEG packets. Changes to allocations in a map generally should be propagated in a way that reliably ensures that both the transmitter and receiver have a consistent view of the octet mappings.
    Type: Application
    Filed: May 7, 2008
    Publication date: December 31, 2009
    Inventors: Richard J. Futch, Thai-Bao H. Kien, Bin Yang, Christopher J. Topazi
  • Patent number: 7590145
    Abstract: Multiplexing of information from a plurality of information flows into fixed-length packets such as, but not limited to, MPEG packets allows efficient utilization of bandwidth and also can be used to reduce transmission latency. In addition, utilizing MPEG packets and transport streams for octet multiplexing allows the packets carrying octet-multiplexed data to easily be integrated with other MPEG packets for other services that are commonly found in cable transmission networks of all coax, hybrid fiber coax, and/or all fiber. Moreover, the multiplexing techniques described herein will work in both wired (or constrained media) and wireless (or free-space propagation) environments. The multiplexing/demultiplexing of octets using MPEG packets generally is described by mappings that specify the use of octets in MPEG packets. Changes to allocations in a map generally should be propagated in a way that reliably ensures that both the transmitter and receiver have a consistent view of the octet mappings.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 15, 2009
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Richard J. Futch, Thai-Bao H. Kien, Bin Yang, Christopher J. Topazi
  • Publication number: 20090196205
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Application
    Filed: April 13, 2009
    Publication date: August 6, 2009
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, JR., Lamar E. West, JR.
  • Patent number: 7519081
    Abstract: Disclosed herein are methods of providing a client with local area network connectivity and access to other services in a cable network. One such method includes: allocating bandwidth in the network to support bi-directional data communication between the host and a central concentrator. Bandwidth is allocated for a downstream flow on at least one downstream frequency channel based on a mapping between the downstream flow and a particular octet in a downstream packet. Bandwidth is allocated for an upstream flow on at least one non-shared upstream tone. The method also includes conveying a bi-directional data flow between the host and the concentrator over the allocated bandwidth, including conveying the upstream flow using the allocated bandwidth and conveying the downstream flow using the allocated bandwidth. The method also includes utilizing bandwidth in the network not allocated to data communications to provide the host with at least one audio/visual service.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 14, 2009
    Assignee: Cisco Technology, Inc.
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Patent number: 7336680
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: February 26, 2008
    Assignee: Scientific-Atlanta, Inc.
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie, Jr., Lamar E. West, Jr.
  • Publication number: 20040264511
    Abstract: Multiplexing of information from a plurality of information flows into fixed-length packets such as, but not limited to, MPEG packets allows efficient utilization of bandwidth and also can be used to reduce transmission latency. In addition, utilizing MPEG packets and transport streams for octet multiplexing allows the packets carrying octet-multiplexed data to easily be integrated with other MPEG packets for other services that are commonly found in cable transmission networks of all coax, hybrid fiber coax, and/or all fiber. Moreover, the multiplexing techniques described herein will work in both wired (or constrained media) and wireless (or free-space propagation) environments. The multiplexing/demultiplexing of octets using MPEG packets generally is described by mappings that specify the use of octets in MPEG packets. Changes to allocations in a map generally should be propagated in a way that reliably ensures that both the transmitter and receiver have a consistent view of the octet mappings.
    Type: Application
    Filed: June 30, 2004
    Publication date: December 30, 2004
    Inventors: Richard J. Futch, Thai-Bao H. Kien, Bin Yang, Christopher J. Topazi
  • Publication number: 20030058885
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 27, 2003
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie,, Lamar E. West,
  • Publication number: 20030053484
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Furthermore, the architecture allows a central concentrator to support a plurality of remote devices that each have guaranteed bandwidth through connection-oriented allocations of bi-directional data flows. The upstream and downstream bandwidth allocation can support symmetrical bandwidth as well as asymmetrical bandwidth in either direction. The architecture generally can be used to support connection-oriented physical layer connectivity between a remote device and the central concentrator.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 20, 2003
    Inventors: Donald C. Sorenson, Jiening Ao, Steven E. Blashewski, John W. Brickell, Florin Farcas, Richard J. Futch, Joseph Graham Mobley, John A. Ritchie,, Lamar E. West,
  • Publication number: 20030053476
    Abstract: An architecture for providing high-speed access over frequency-division multiplexed (FDM) channels allows transmission of ethernet frames and/or other data across a cable transmission network or other form of FDM transport. The architecture involves downstream and upstream FDM multiplexing techniques to allow contemporaneous, parallel communications across a plurality of frequency channels. Each downstream data flow is fragmented into individual octets that are multiplexed into MPEG packets. An MPEG packet may carry the octets for a plurality of individual data flows. Furthermore, the MPEG packets may be frequency-division multiplexed across and may be contemporaneously communicated over a plurality of frequency channels. Also, the octets from a data flow do not necessarily have to use consecutive octets in an MPEG packet. Instead, consecutive octets in an MPEG packet may carry information for two different data flows.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 20, 2003
    Inventors: Donald C. Sorenson, Richard J. Futch