Patents by Inventor Richard J Miller

Richard J Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139512
    Abstract: An example system includes a first lead configured to be positioned in or beside a left internal jugular vein (IJV) of a patient to deliver a first stimulation signal to a first vagus nerve, the first lead including one or more first segmented electrodes positioned on a distal portion of the first lead and a first anchoring mechanism; a second lead configured to be positioned in or beside a right IJV of the patient to deliver a second stimulation signal to a second vagus nerve, the second lead including one or more second segmented electrodes positioned on a distal portion of the second lead and a second anchoring mechanism; and circuitry configured to deliver electrical energy to the first lead to deliver the first stimulation signal and the second lead to deliver the second stimulation signal to provide bilateral stimulation to the first vagus nerve and the second vagus nerve.
    Type: Application
    Filed: October 28, 2022
    Publication date: May 2, 2024
    Inventors: Randal C. Schulhauser, Richard J. O'Brien, Scott R. Stanslaski, Mark P. Ashby, Avram Scheiner, Becky L. Dolan, William Valls, JR., David J. Miller, Varun Umesh Kashyap, Peter N. Braido, Lilian Kornet
  • Patent number: 11963691
    Abstract: A surgical instrument, has an end effector that includes an ultrasonic blade, and a clamp arm that moves relative to the ultrasonic blade from an opened position toward an intermediate position and a closed position. The clamp arm is offset from the ultrasonic blade to define a predetermined gap in the intermediate position between the opened position and the closed position. A clamp arm actuator connects to the clamp arm and moves from an opened configuration to a closed configuration to direct the clamp arm from the opened position toward the intermediate position and the closed position. A spacer connects with the clamp arm to inhibit movement of the clamp arm from the intermediate position toward the closed position for maintaining the predetermined gap between the clamp arm and the ultrasonic blade.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Joseph Dennis, Geni M. Giannotti, Bryce L. Heitman, Timothy S. Holland, Joseph E. Hollo, Andrew Kolpitcke, Amy M. Krumm, Jason R. Lesko, Matthew C. Miller, David A. Monroe, Ion V. Nicolaescu, Rafael J. Ruiz Ortiz, Matthew S. Schneider, Richard C. Smith, Shawn C. Snyder, Sarah A. Worthington, Monica L. Rivard, Fajian Zhang
  • Publication number: 20240109210
    Abstract: A hair cutting device or clipper is provided with a magnetic blade assembly. The hair cutting device includes a cutting blade, a stationary blade and a yoke attached to the cutting blade. The yoke and/or cutting blade may be magnetized to create an attractive or repulsive force between the cutting blade and the stationary blade.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Richard J. Tringali, Zachary Fossum, Jassen R. Miller
  • Patent number: 11931739
    Abstract: Provided are methods, devices, and kits for the isolation and detection of one or more analytes of interest from a biological sample using microslit filter membranes. In various examples, the methods use capture particles and binding agents for specific recognition of one or more analytes of interest.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: March 19, 2024
    Assignees: SiMPore Inc., University of Rochester
    Inventors: James A. Roussie, James L. McGrath, Richard E. Waugh, Kilean S. Lucas, Joshua J. Miller
  • Publication number: 20200039941
    Abstract: Provided herein are small molecule modulators of CXCR4 activity (e.g., agonists, antagonists, inverse agonists, partial agonists), and methods of use thereof (e.g., for the treatment of disease).
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Inventors: Gary E. Schiltz, Richard J. Miller, Rama K. Mishra
  • Patent number: 10435375
    Abstract: Provided herein are small molecule modulators of CXCR4 activity (e.g., agonists, antagonists, inverse agonists, partial agonists), and methods of use thereof (e.g., for the treatment of disease).
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: October 8, 2019
    Assignee: Northwestern University
    Inventors: Gary E. Schiltz, Richard J. Miller, Rama K. Mishra
  • Publication number: 20180155295
    Abstract: Provided herein are small molecule modulators of CXCR4 activity (e.g., agonists, antagonists, inverse agonists, partial agonists), and methods of use thereof (e.g., for the treatment of disease).
    Type: Application
    Filed: May 5, 2016
    Publication date: June 7, 2018
    Inventors: Gary E. Schiltz, Richard J. Miller, Rama K. Mishra
  • Patent number: 8063560
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 7798650
    Abstract: A device for producing a two dimensional image includes means for generating coherent light, and means for directing light received from the means for generating coherent light to a plurality of electrically addressable spatial light modulators (EASLM). The device includes means for diffracting the light, wherein the light is simultaneously diffracted by the plurality of EASLM, and means for displaying the two dimensional image. The device further includes means for directing the diffracted light to the means for displaying the two dimensional image, wherein a frame rate of each of the plurality of EASLM is greater than a frame rate of the two dimensional image produced at the means for displaying the two dimensional image.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: September 21, 2010
    Inventor: Richard J. Miller
  • Patent number: 7602121
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 13, 2009
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20090122266
    Abstract: A device for producing a two dimensional image includes means for generating coherent light, and means for directing light received from the means for generating coherent light to a plurality of electrically addressable spatial light modulators (EASLM). The device includes means for diffracting the light, wherein the light is simultaneously diffracted by the plurality of EASLM, and means for displaying the two dimensional image. The device further includes means for directing the diffracted light to the means for displaying the two dimensional image, wherein a frame rate of each of the plurality of EASLM is greater than a frame rate of the two dimensional image produced at the means for displaying the two dimensional image.
    Type: Application
    Filed: November 20, 2008
    Publication date: May 14, 2009
    Applicant: F. Poszat HU, LLC
    Inventor: Richard J. Miller
  • Patent number: 7470028
    Abstract: A device for forming an image on a screen is described that comprises a coherent illumination means, an electrically addressed spatial light modulator means located in the path of light from the coherent illumination means, means for producing computer generated hologram images for display on the electrically addressed spatial light modulator means, and optics to direct light diffracted by the electrically addressed spatial light modulator means to the screen. The device is arranged so that a computer generated image or images displayed by the electrically addressed spatial light modulator means result in a two dimensional image being formed at the screen.
    Type: Grant
    Filed: January 19, 2004
    Date of Patent: December 30, 2008
    Inventor: Richard J Miller
  • Patent number: 7407423
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 5, 2008
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6998776
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: February 14, 2006
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6927748
    Abstract: A spatial light modulator imaging system comprises an electrically addressed spatial light modulator (EASLM 4, 30) whose optical image output is projected onto different areas of an optically addressed spatial light modulator (OASLM, 6, 8, 31) in a sequence. The OASLM carries electrodes which allow separate areas to be selectively addressed by application of a voltage whilst receiving light from the EASLM. The combined output from all areas of the OASLM forms a visible image to an observer (11). When illuminated by coherent light the OASLM may produce a holographic image, otherwise incoherent light is used to provide a two dimensional image. The OASLM in one example contains a layer of nematic liquid crystal material between two cell walls both treated with an alignment layer providing low tilt surface alignment that is parallel in opposite direction; the product of layer thickness d and material birefringence ?n approximately equals one quarter of the wavelength ? of read light (12, 37).
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 9, 2005
    Assignee: Holographic Imaging LLC
    Inventors: Jonathan R Hughes, Richard J Miller
  • Publication number: 20040207314
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, Robert Morena, Joseph F. Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20040196524
    Abstract: A spatial light modulator imaging system comprises an electrically addressed spatial light modulator (EASLM 4, 30) whose optical image output is projected onto different areas of an optically addressed spatial light modulator (OASLM, 6, 8, 31) in a sequence. The OASLM carries electrodes which allow separate areas to be selectively addressed by application of a voltage whilst receiving light from the EASLM. The combined output from all areas of the OASLM forms a visible image to an observer (11). When illuminated by coherent light the OASLM may produce a holographic image, otherwise incoherent light is used to provide a two dimensional image. The OASLM in one example contains a layer of nematic liquid crystal material between two cell walls both treated with an alignment layer providing low tilt surface alignment that is parallel in opposite direction; the product of layer thickness d and material birefringence &Dgr;n approximately equals one quarter of the wavelength &lgr; of read light (12, 37).
    Type: Application
    Filed: March 31, 2004
    Publication date: October 7, 2004
    Applicant: HOLOGRAPHIC IMAGING LLC.
    Inventors: Jonathan R. Hughes, Richard J. Miller
  • Patent number: 6745889
    Abstract: An articulating cabinet support assembly for a moving conveyor system includes a base assembly, fixed to the conveyor, and a movable support arm. A cabinet traveling down an assembly line is arranged on the support arm as the cabinet proceeds through various assembly stations. The support arm can articulate relative to the base assembly from a home, normally horizontal position to a position angled with respect to the direction of travel in order to enhance assembly procedures. An adjustable arm assembly including a cam roller and roller guide structure are provided to establish the home position and to counterbalance the weight of the cabinet. A tilt stop mechanism is employ to enable adjustments in the degree of pivoting of the support arm and provisions are made to automatically reposition the cabinet in the home position following various assembly stages.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: June 8, 2004
    Assignee: Maytag Corporation
    Inventors: David Beversdorf, Dale L. Brooks, Bob Dodge, Donald D. Dowell, Jr., Dennis Easley, David Fawer, Wayne Glisan, Michael E. Groff, Edwin C. Hunter, William H. Mast, Richard J. Miller, Deborah A. Morse, Frances Piester, James E. Rounds, Joe R. Torrance
  • Publication number: 20030081162
    Abstract: An alignment layer on a first substrate (1) comprises a material which can be altered from a first to a second state by the action of incident light (5) of at least a first wavelength, the first and second states causing adjacent portions of a liquid crystal layer (3) to tend to adopt corresponding different first and second alignments. As the alignment layer is altered from its first to its said second state, realignment of the liquid crystal is facilitated by changing its ordering out of the first alignment, for example by applying an electric field (as shown from in-plane electrodes (7)), or by disrupting the liquid crystal ordering. The alignment layer may comprise a Schiff base, azo dye or a stilbene which can effectively realign in response to incident polarised light producing cis-trans isomerisation therein. The liquid crystal layer may be locally realigned by local optical and/or electrical addressing (as shown from (a) to (c) a local beam (5) alters the planar alignment direction at substrate (1)).
    Type: Application
    Filed: June 25, 2002
    Publication date: May 1, 2003
    Inventor: Richard J Miller
  • Patent number: RE43608
    Abstract: A spatial light modulator imaging system comprises an electrically addressed spatial light modulator (EASLM 4, 30) whose optical image output is projected onto different areas of an optically addressed spatial light modulator (OASLM, 6, 8, 31) in a sequence. The OASLM carries electrodes which allow separate areas to be selectively addressed by application of a voltage whilst receiving light from the EASLM. The combined output from all areas of the OASLM forms a visible image to an observer (11). When illuminated by coherent light the OASLM may produce a holographic image, otherwise incoherent light is used to provide a two dimensional image. The OASLM in one example contains a layer of nematic liquid crystal material between two cell walls both treated with an alignment layer providing low tilt surface alignment that is parallel in opposite direction; the product of layer thickness d and material birefringence ?n approximately equals one quarter of the wavelength ? of read light (12, 37).
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: August 28, 2012
    Assignee: F. Poszat HU, LLC
    Inventors: Jonathan R Hughes, Richard J Miller