Patents by Inventor Richard Jacubinas

Richard Jacubinas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9725428
    Abstract: A continuous process for the preparation of propylene oxide, comprising (i) providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, water, optionally propane, and at least one dissolved potassium salt of a phosphorus oxyacid wherein the molar ratio of potassium relative to phosphorus in the at least one potassium salt of a phosphorus oxyacid is in the range of from 0.6 to 1.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 8, 2017
    Assignees: BASF SE, Dow Global Technologies LLC
    Inventors: Joaquim Henrique Teles, Bianca Seelig, Dominic Riedel, Philip Kampe, Daniel Urbanczyk, Markus Weber, Ulrich Mueller, Andrei-Nicolae Parvulescu, Kai Gumlich, Peter Bassler, Christian Bartosch, Richard Jacubinas, Meinolf Weidenbach, Werner Witzl
  • Publication number: 20160176834
    Abstract: A continuous process for the preparation of propylene oxide, comprising (i) providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, water, optionally propane, and at least one dissolved potassium salt of a phosphorus oxyacid wherein the molar ratio of potassium relative to phosphorus in the at least one potassium salt of a phosphorus oxyacid is in the range of from 0.6 to 1.
    Type: Application
    Filed: July 16, 2014
    Publication date: June 23, 2016
    Applicants: BASF SE, Dow Global Technologies LLC
    Inventors: Joaquim Henrique TELES, Bianca SEELIG, Dominic RIEDEL, Philip KAMPE, Daniel URBANCZYK, Markus WEBER, Ulrich MUELLER, Andrei-Nicolae PARVULESCU, Kai GUMLICH, Peter BASSLER, Christian BARTOSCH, Richard JACUBINAS, Meinolf WEIDENBACH, Werner WITZL
  • Patent number: 9371239
    Abstract: A tin containing zeolitic material having an MWW-type framework structure (Sn-MWW), having a tin content of at most 2 weight-%, calculated as element and based on the weight of the Sn-MWW, and having an X-ray diffraction pattern comprising peaks at 2 theta diffraction angles of (6.6±0.1)°, (7.1±0.1)°, and (7.9±0.1)°.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: June 21, 2016
    Assignee: BASF SE
    Inventors: Andrei-Nicolae Parvulescu, Ulrich Müller, Joaquim Henrique Teles, Nicolas Vautravers, Bernd Hinrichsen, Gerhard Cox, Richard Jacubinas
  • Patent number: 9254476
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: February 9, 2016
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Publication number: 20150045211
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8927745
    Abstract: A process for producing propylene oxide comprising reacting propene with hydrogen peroxide in the presence of a catalyst to give a mixture (G1) comprising propylene oxide, unreacted propene, and oxygen; separating propylene oxide from mixture (G1) to give a mixture (GII) comprising propene and oxygen; and adding hydrogen to mixture (GII) and reducing the oxygen comprised in mixture (GII) at least partially by reaction with hydrogen in the presence of a catalyst comprising copper in elemental and/or oxidic form on a support, wherein copper is present on the support in an amount of 30 to 80 wt.-% based on the whole catalyst and calculated as CuO.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: January 6, 2015
    Assignees: BASF SE, The Dow Chemical Company
    Inventors: Philip Kampe, Peter Resch, Soo Yin Chin, Peter Bassler, Ulrich Mueller, Goetz-Peter Schindler, Hans-Georg Goebbel, Joaquim Henrique Teles, Kai Gumlich, Thomas Grassler, Christian Bartosch, Richard Jacubinas, Meinolf Weidenbach
  • Patent number: 8895468
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8835347
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
  • Patent number: 8785670
    Abstract: A continuous process for the production of propylene oxide comprising reacting propene with hydrogen peroxide in methanolic solution in the presence of a titanium silicalite-1 catalyst to obtain propylene oxide, wherein a reaction feed comprising propene, methanol and hydrogen peroxide is introduced into a reactor, said reaction feed containing potassium cations and phosphorus in the form of anions of at least one phosphorus oxyacid.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 22, 2014
    Assignees: BASF SE, The Dow Chemical Company
    Inventors: Joaquim Henrique Teles, Kai Gumlich, Peter Bassler, Christian Bartosch, Philip Kampe, Hans-Georg Goebbel, Ulrich Mueller, Richard Jacubinas
  • Publication number: 20140163243
    Abstract: A tin containing zeolitic material having an MWW-type framework structure (Sn-MWW), having a tin content of at most 2 weight-%, calculated as element and based on the weight of the Sn-MWW, and having an X-ray diffraction pattern comprising peaks at 2 theta diffraction angles of (6.6±0.1)°, (7.1±0.1)°, and (7.9±0.1)°.
    Type: Application
    Filed: November 5, 2013
    Publication date: June 12, 2014
    Applicant: BASF SE
    Inventors: Andrei-Nicolae Parvulescu, Ulrich Müller, Joaquim Henrique Teles, Nicolas Vautravers, Bernd Hinrichsen, Gerhard Cox, Richard Jacubinas
  • Patent number: 8609879
    Abstract: A method for separating acetonitrile from water, comprising (i) providing a stream S1 containing at least 95 wt.-%, based on the total weight of S1, acetonitrile and water, wherein the weight ratio of acetonitrile: water is greater than 1; (ii) adding a stream P, comprising at least 95 wt.-% C3, based on the total weight of stream P, to S1 to obtain a mixed stream S2, C3 being propene optionally admixed with propane with a minimum weight ratio of propene: propane of 7:3; (iii) subjecting S2 to a temperature of 92° C. at most and a pressure of at least 10 bar, obtaining a first liquid phase L1 essentially consisting of C3, acetonitrile, and water, and a second liquid phase L2 essentially consisting of water and acetonitrile wherein the weight ratio of acetonitrile: water in L2 is less than 1; (iv) separating L1 from L2.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 17, 2013
    Assignees: BASF SE, The Dow Chemical Company
    Inventors: Joaquim Henrique Teles, Hans-Georg Göbbel, Peter Baβler, Philip Kampe, Kai Gumlich, Christian Bartosch, Ulrich Müller, Richard Jacubinas, Natalia Trukhan, Meinolf Weidenbach, Martin Cogswell
  • Publication number: 20130072739
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Publication number: 20120142950
    Abstract: A continuous process for the production of propylene oxide comprising reacting propene with hydrogen peroxide in methanolic solution in the presence of a titanium silicalite-1 catalyst to obtain propylene oxide, wherein a reaction feed comprising propene, methanol and hydrogen peroxide is introduced into a reactor, said reaction feed containing potassium cations and phosphorus in the form of anions of at least one phosphorus oxyacid.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 7, 2012
    Applicants: The Dow Chemical Company, BASF SE
    Inventors: Joaquim Henrique TELES, Kai Gumlich, Peter Bassler, Christian Bartosch, Philip Kampe, Hans-Georg Göbbel, Ulrich Müller, Richard Jacubinas
  • Publication number: 20120065413
    Abstract: A process for producing propylene oxide comprising reacting propene with hydrogen peroxide in the presence of a catalyst to give a mixture (G1) comprising propylene oxide, unreacted propene, and oxygen; separating propylene oxide from mixture (G1) to give a mixture (GII) comprising propene and oxygen; and adding hydrogen to mixture (GII) and reducing the oxygen comprised in mixture (GII) at least partially by reaction with hydrogen in the presence of a catalyst comprising copper in elemental and/or oxidic form on a support, wherein copper is present on the support in an amount of 30 to 80 wt.-% based on the whole catalyst and calculated as CuO.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 15, 2012
    Applicants: The Dow Chemical Company, BASF SE
    Inventors: Philip Kampe, Peter Resch, Soo Yin Chin, Peter Bassler, Ulrich Mueller, Goetz-Peter Schindler, Hans-Georg Goebbel, Joaquim Henrique Teles, Kai Gumlich, Thomas Grassler, Christian Bartosch, Richard Jacubinas, Meinolf Weidenbach
  • Publication number: 20110065939
    Abstract: A method for separating acetonitrile from water, comprising (i) providing a stream S1 containing at least 95 wt.-%, based on the total weight of S1, acetonitrile and water, wherein the weight ratio of acetonitrile:water is greater than 1; (ii) adding a stream P, comprising at least 95 wt.-% C3, based on the total weight of stream P, to S1 to obtain a mixed stream S2, C3 being propene optionally admixed with propane with a minimum weight ratio of propene:propane of 7:3; (iii) subjecting S2 to a temperature of 92° C. at most and a pressure of at least 10 bar, obtaining a first liquid phase L1 essentially consisting of C3, acetonitrile, and water, and a second liquid phase L2 essentially consisting of water and acetonitrile wherein the weight ratio of acetonitrile:water in L2 is less than 1; (iv) separating L1 from L2.
    Type: Application
    Filed: July 16, 2010
    Publication date: March 17, 2011
    Applicants: BASF SE, The Dow Chemical Company
    Inventors: Joaquim Henrique Teles, Hans-Georg Göbbel, Peter Baßler, Philip Kampe, Kai Gumlich, Christian Bartosch, Ulrich Müller, Richard Jacubinas, Natalia Trukhan, Meinolf Weidenbach, Martin Cogswell
  • Publication number: 20100312035
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: BASF CATALYSTS LLC
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool