Patents by Inventor Richard John Koshel

Richard John Koshel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240009340
    Abstract: Methods, apparatus and systems that relate to high performance UV disinfection in a HVAC system with integrated concentrator optics are described. One example device for air disinfection includes a housing structured to include an interior volume and having an air inlet at a first end of the housing and an air outlet at a second end of the housing, the housing providing an air passage through the interior volume between the air inlet and the air outlet. The device filter includes at least one light source positioned proximate to the interior volume and at least one nonimaging optics element positioned proximate to the interior volume.
    Type: Application
    Filed: August 25, 2021
    Publication date: January 11, 2024
    Inventors: Stanley Pau, Richard John Koshel, Linan Jiang
  • Publication number: 20230078133
    Abstract: A system for performing advanced spectrometry using a camera of a personal electronic device. Light from a sample is captured via a light dispersion device that diffracts the light in accordance with the wavelength of that light. A sample spectrum image is captured using a camera of a personal electronic device. Spectral data is extracted from the sample spectrum image and the spectral data is wavelength calibrated by mapping each pixel position in the sample spectrum image to a wavelength. Features are extracted from the wavelength calibrated spectral data and used by classification module, trained on a dataset of features extracted from spectral data of known samples, to classify the sample. In some embodiments, a calibration spectrum image captured from a calibration light source having a known spectrum (e.g., in the same image frame using a bifurcated fiber optic cable) is used to wavelength calibrate the spectral data.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 16, 2023
    Inventors: Richard John Koshel, Travis Sawyer, Justina Bonaventura, Thomas Graham Knapp
  • Publication number: 20230085600
    Abstract: A self-calibrating spectrometer that captures a sample spectrum image of a sample via a light dispersion device and a calibration spectrum image of a calibration light source having a known spectrum (e.g., in the same image frame using a bifurcated fiber optic cable). Spectral data is extracted from the sample spectrum image and wavelength calibrated by matching calibration spectral data extracted from the calibration spectrum image to the known spectrum of the calibration light source, mapping each pixel position of the calibration spectrum image to a wavelength of the known spectrum of the calibration light source, and mapping each pixel position of the sample spectral data to a wavelength based on the pixel position-to-wavelength mapping. In some embodiments, extracted features from the wavelength calibrated spectral data are used by classification module, trained on a dataset of features extracted from spectral data of known samples, to classify the sample.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 16, 2023
    Inventors: Richard John Koshel, Travis Sawyer, Justina Bonaventura, Thomas Graham Knapp
  • Patent number: 10514335
    Abstract: Systems and methods spectrally and radiometrically calibrate an optical spectrum detected with a color-image sensor of an optical spectrometer. When the color-image sensor includes a Bayer filter, the red-peaked, green-peaked, and blue-peaked spectral responses of the color filters forming the Bayer filter may be used to identify unique spectral signatures in the red, green, and blue color channels. These spectral signatures may be used to associate calibration wavelengths to the pixel locations of the color-image sensor where the spectral signatures are observed. A fitted model may then be used to associate a wavelength to each pixel location of the color-image sensor. These systems and methods account for translational shifts of the optical spectrum on the color-image sensor induced by optical image stabilization, and thus may aid optical spectrometry utilizing a digital camera in a smartphone or tablet computer.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Rachel Nicole Ulanch, Richard John Koshel
  • Publication number: 20190079004
    Abstract: Systems and methods spectrally and radiometrically calibrate an optical spectrum detected with a color-image sensor of an optical spectrometer. When the color-image sensor includes a Bayer filter, the red-peaked, green-peaked, and blue-peaked spectral responses of the color filters forming the Bayer filter may be used to identify unique spectral signatures in the red, green, and blue color channels. These spectral signatures may be used to associate calibration wavelengths to the pixel locations of the color-image sensor where the spectral signatures are observed. A fitted model may then be used to associate a wavelength to each pixel location of the color-image sensor. These systems and methods account for translational shifts of the optical spectrum on the color-image sensor induced by optical image stabilization, and thus may aid optical spectrometry utilizing a digital camera in a smartphone or tablet computer.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 14, 2019
    Inventors: Rachel Nicole Ulanch, Richard John Koshel