Patents by Inventor Richard K. Everett

Richard K. Everett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130122477
    Abstract: A gel formulation for use as simulated tissue for ballistic testing includes a mixture of gelatin, a glycol, such as ethylene glycol, and water. The gel may be formed in a mold to simulate a body part, such as an organ. A ratio of gelatin to glycol may be varied, depending on the body part to be simulated. An anatomic model may be formed by incorporating simulated organs formed with different gelatin to glycol ratios.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 16, 2013
    Inventor: Richard K. Everett
  • Publication number: 20100311025
    Abstract: A gel formulation for use as simulated tissue for ballistic testing includes a mixture of gelatin, a glycol, such as ethylene glycol, and water. The gel may be formed in a mold to simulate a body part, such as an organ. A ratio of gelatin to glycol may be varied, depending on the body part to be simulated. An anatomic model may be formed by incorporating simulated organs formed with different gelatin to glycol ratios.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 9, 2010
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventor: Richard K. Everett
  • Publication number: 20040055419
    Abstract: Metal coated powders are produced by suspending a precursor metal salt and the powder to be coated in a glycol. This mixture is heated, and the metal salt is reduced and the metal precipitates as a coating onto the powder.
    Type: Application
    Filed: January 19, 2001
    Publication date: March 25, 2004
    Inventors: Lynn K. Kurihara, Richard K. Everett
  • Patent number: 6405600
    Abstract: A material test specimen design is taught for the determination of critical strain and stress states for multiaxial fracture. The objective of the specimen is to increase the amount of data obtained per specimen while retaining simplicity in testing procedure by using standard tension testing machines to generate the primary deformation of the specimen. The specimen, in conjunction with analytical or computational simulation, uses nonuniform deformation fields produced by secondary and tertiary strain concentrations to generate and track these multiaxial strain states to fracture. Typically, the primary deformation is uniaxial tension of a panel, the secondary strain concentration is a circular hole in the panel and the tertiary strain concentrations are areas of reduced thickness within the deformation field of the circular hole. Multiaxial strain ratios from −0.50 to −0.10 and control over fracture initiation sites may be generated by a test specimen design of the type taught by this invention.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: June 18, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Peter Matic, Richard K. Everett, Virginia G. DeGiorgi, Andrew B. Geltmacher
  • Patent number: 6376074
    Abstract: A debonding layer is formed on fibers such as silicon carbide fibers by forming a thin film of a metal such as nickel or iron on the silicon carbide fibers and then annealing at a temperature of about 350-550° C. to form a debond layer of a metal silicide and carbon. These fibers having the debond coating can be added to composite forming materials and the mixture treated to form a consolidated composite. A one heating-step method to form a consolidated composite involves inserting the silicon carbide fibers with just the initial metal film coating into the composite forming materials and then heating the mixture to form the debond coating in situ on the fibers and to form the consolidated composite. Preferred heating techniques include high temperature annealing, hot-pressing, or hot isostatic pressing (HIP).
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: April 23, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard K. Everett, Alan S. Edelstein, John H. Perepezko
  • Patent number: 6056907
    Abstract: A debonding layer is formed on fibers such as silicon carbide fibers by fing a thin film of a metal such as nickel or iron on the silicon carbide fibers and then annealing at a temperature of about 350-550.degree. C. to form a debond layer of a metal silicide and carbon. These fibers having the debond coating can be added to composite forming materials and the mixture treated to form a consolidated composite. A one heating-step method to form a consolidated composite involves inserting the silicon carbide fibers with just the initial metal film coating into the composite forming materials and then heating the mixture to form the debond coating in situ on the fibers and to form the consolidated composite. Preferred heating techniques include high temperature annealing, hot-pressing, or hot isostatic pressing (HIP).
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: May 2, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard K. Everett, Alan S. Edelstein, John H. Perepezko
  • Patent number: 6051152
    Abstract: Filamentous substrates are coated with diamond by a chemical vapor deposition process. The substrate may then be etched away to form a diamond filament, such as a diamond tube or a diamond fiber. In a preferred embodiment, the substrate is copper-coated graphite. The copper initially passivates the graphite, permitting diamond nucleation thereon. As deposition continues, the copper-coated graphite is etched away by the active hydrogen used in the deposition process. As a result a substrate-less diamond fiber is formed. Diamond-coated and diamond filaments are useful as reinforcement materials for composites, is filtration media in chemical and purification processes, in biomedical applications as probes and medicinal dispensers, and in such esoteric areas as chaff media for jamming RF frequencies.
    Type: Grant
    Filed: December 20, 1994
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul M. Natishan, Arthur M. Morrish, Alan S. Edelstein, Richard K. Everett, Pehr E. Pehrsson
  • Patent number: 5930580
    Abstract: A porous material of desired porosity and pore size is made by mixing a piculate material and fungible beads that are thermally decomposable until the desired distribution is attained; compacting the mixed material and beads to form a green body that has sufficient strength to be handled where the beads are undecomposed; and compacting and heating the green body to fuse the material particles and to decompose the beads to gas.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: July 27, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Richard K. Everett
  • Patent number: 5494634
    Abstract: Graphite or carbon particles with a graphitic skin are intercalated with a compound including an oxidized form of a metal and then reduced in a hydrogen atmosphere. This process reduces the driving force for the galvanic reaction between the particles and active metals in aqueous environments. The particles may be present as a reinforcement for a metal matrix (e.g., graphite/aluminum metal matrix composites) or as a reinforcement for a non-metallic material (e.g., graphite/polyimide, graphite/polyester or graphite/cyanate composites). In the latter case, the composite is adjacent to a metal in a structure.By way of example, the graphite or carbon particle may be a fiber, the metal subject to attack may be aluminum or magnesium, and the intercalation compound may be NiCl.sub.2.
    Type: Grant
    Filed: January 15, 1993
    Date of Patent: February 27, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alan S. Edelstein, Richard K. Everett, Patricia P. Trzaskoma, Benji Maruyama
  • Patent number: 4853294
    Abstract: An improved metal, alloy, or intermetallic matrix composite containing carbon reinforcing fibers is formed. The carbon reinforcing fibers are protected from interaction with the matrix material by an inner and an outer barrier layer. The outer layer is any one of the group of stable, non-reactive ceramic materials used to protect fibers, and the inner layer is a ductile, low density, oxygen desorbing rare earth metal. The carbon fibers are particularly useful in forming composites with a titanium aluminide matrix.
    Type: Grant
    Filed: June 28, 1988
    Date of Patent: August 1, 1989
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Richard K. Everett, William F. Henshaw