Patents by Inventor Richard Karmhag
Richard Karmhag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10012887Abstract: A method for enhancing the reliability of contacting the conductive layers in a laminated electrochromic device structure is disclosed (FIG. 7). The laminate structure (10), typically fabricated in the form of a sheet, comprises: two polymer substrates (21, 22); two conductive layers (31, 32)—one arranged on each substate—and facing each other; an electrochromic layer (41) and a counter-electrode layer (42) each arranged on different conductive layers; and an electrolyte layer (50) interposed between the electrochromic layer and the counter-electrode layer. Either an incision with an undulating cutting depth or perforations of predetermined sizes, depths (through at least most of one substrate) and separations are prefabricated along a desired tear line in the structure (step 220)—once the final shape of the device is defined—to facilitate the tearing away of the one polymer substrate to reveal the conductive layer to be contacted on the underlying substrate.Type: GrantFiled: April 14, 2014Date of Patent: July 3, 2018Assignee: CHROMOGENICS ABInventors: Richard Karmhag, Greger Gregard, Roger Vogt
-
Patent number: 9778531Abstract: An electrochromic device (1) comprises an electrochromic layered structure (10) having a first substrate sheet (21), a second substrate sheet (22), a first (23) and a second (24) electron conducting layer at least partially covering a respective substrate sheet, an electrochromic layer (25) and a counter electrode layer (26) at least partially covering a respective electron conducting layer and an electrolyte layer (30) laminated between and at least partially covering the first electrochromic layer and the counter electrode layer. The electrochromic layered structure also has an area (51, 52) in which the electrochromic layer or the counter electrode layer is not covered by the electrolyte layer. An electrode (41, 42) is soldered to the respective electron conducting layer through the electrochromic layer or the counter electrode layer.Type: GrantFiled: July 23, 2014Date of Patent: October 3, 2017Assignee: CHROMOGENICS ABInventors: Greger Gregard, Richard Karmhag
-
Publication number: 20160161818Abstract: An electrochromic device (1) comprises an electrochromic layered structure (10) having a first substrate sheet (21), a second substrate sheet (22), a first (23) and a second (24) electron conducting layer at least partially covering a respective substrate sheet, an electrochromic layer (25) and a counter electrode layer (26) at least partially covering a respective electron conducting layer and an electrolyte layer (30) laminated between and at least partially covering the first electrochromic layer and the counter electrode layer. The electrochromic layered structure also has an area (51, 52) in which the electrochromic layer or the counter electrode layer is not covered by the electrolyte layer. An electrode (41, 42) is soldered to the respective electron conducting layer through the electrochromic layer or the counter electrode layer.Type: ApplicationFiled: July 23, 2014Publication date: June 9, 2016Applicant: Chromogenics ABInventors: Greger GREGARD, Richard KARMHAG
-
Publication number: 20160085128Abstract: A method for enhancing the reliability of contacting the conductive layers in a laminated electrochromic device structure is disclosed (FIG. 7). The laminate structure (10), typically fabricated in the form of a sheet, comprises: two polymer substrates (21, 22); two conductive layers (31, 32)—one arranged on each substate—and facing each other; an electrochromic layer (41) and a counter-electrode layer (42) each arranged on different conductive layers; and an electrolyte layer (50) interposed between the electrochromic layer and the counter-electrode layer. Either an incision with an undulating cutting depth or perforations of predetermined sizes, depths (through at least most of one substrate) and separations are prefabricated along a desired tear line in the structure (step 220)—once the final shape of the device is defined—to facilitate the tearing away of the one polymer substrate to reveal the conductive layer to be contacted on the underlying substrate.Type: ApplicationFiled: April 14, 2014Publication date: March 24, 2016Inventors: Richard KARMHAG, Greger GREGARD, Roger VOGT
-
Patent number: 7952785Abstract: A manufacturing method of electrochromic devices (10) includes the steps of providing a first and second sheet including a first (22) and second (24) plastic substrate, respectively, at least partially coated with a first (12) and second (14) electron conducting layer, respectively. The first sheet is at least partially coated with a first electrochromic layer (16). The second sheet is at least partially coated with a counter electrode layer (18). The first and second sheets are laminated with an electrolyte layer (20) interposed in-between into an electrochromic laminate sheet (30). The electrochromic device is at least partially defined by forming a seal (50) through the electrochromic laminate sheet (30) at a distance (D) from a peripheral edge (31). The distance (D) is preferably larger than the mean diffusion lengths of oxygen, water or an electrolyte component in the electrolyte during a predetermined time period.Type: GrantFiled: July 25, 2007Date of Patent: May 31, 2011Assignee: Chromogenics Sweden ABInventors: Richard Karmhag, Greger Gustavsson, Claes Goran Granqvist, Andris Azens
-
Patent number: 7872791Abstract: An electrochromic device (50) includes at least the typical five layer stack (12, 14, 16, 18, 20) between two substrates (22, 24) and connections elements (42, 44, 66) to the electron conducting layers (12, 14). At least one of the connections elements (42, 44, 66) are arranged through the substrate (22, 24). In preferred embodiments the points where the connection elements (42, 44, 66) penetrate the substrates are situated at different lateral positions. The substrates (22, 24) are typically plastic substrates. In another aspect of the invention, a manufacturing method providing an electrochromic device (50) according to the above described principles is provided.Type: GrantFiled: July 25, 2007Date of Patent: January 18, 2011Assignee: Chromogenics Sweden ABInventors: Richard Karmhag, Greger Gustavsson
-
Patent number: 7808692Abstract: A method of manufacturing permanently curved electrochromic devices is presented. The method includes provision (210, 211) of two plane thermoplastic substrates at least partly coated by an electron conducting layer. The substrates are further at least partially coated (220, 221) with an electrochromic or a counter electrode layer. The coated substrates laminated (230) together with an adhesive electrolyte layer in the middle into an electrochromic laminate sheet. The electrochromic device is formed (240) by thermoforming the covered substrates into a permanent curvature, prior or after the further coating, prior to the laminating of the substrates or by thermoforming the electrochromic laminate sheet after the lamination. Once formed, the coated substrates or electrochromic device, respectively, permanently remains in its curved shape. Additional layer, such as bus bars and layers for chemically adaptation can be provided onto the substrates prior or after the thermoforming step.Type: GrantFiled: July 25, 2007Date of Patent: October 5, 2010Assignee: Chromogenics Sweden ABInventors: Richard Karmhag, Greger Gustavsson
-
Publication number: 20090316248Abstract: A manufacturing method of electrochromic devices (10) includes the steps of providing a first and second sheet including a first (22) and second (24) plastic substrate, respectively, at least partially coated with a first (12) and second (14) electron conducting layer, respectively. The first sheet is at least partially coated with a first electrochromic layer (16). The second sheet is at least partially coated with a counter electrode layer (18). The first and second sheets are laminated with an electrolyte layer (20) interposed in-between into an electrochromic laminate sheet (30). The electrochromic device is at least partially defined by forming a seal (50) through the electrochromic laminate sheet (30) at a distance (D) from a peripheral edge (31). The distance (D) is preferably larger than the mean diffusion lengths of oxygen, water or an electrolyte component in the electrolyte during a predetermined time period.Type: ApplicationFiled: July 25, 2007Publication date: December 24, 2009Applicant: CHROMOGENICS SWEDEN ABInventors: Richard Karmhag, Greger Gustavsson, Claes Goran Granqvist, Andris Azens
-
Publication number: 20090303565Abstract: An electrochromic device (50) includes at least the typical five layer stack (12, 14, 16, 18, 20) between two substrates (22, 24) and connections elements (42, 44, 66) to the electron conducting layers (12, 14). At least one of the connections elements (42, 44, 66) are arranged through the substrate (22, 24). In preferred embodiments the points where the connection elements (42, 44, 66) penetrate the substrates are situated at different lateral positions. The substrates (22, 24) are typically plastic substrates. In another aspect of the invention, a manufacturing method providing an electrochromic device (50) according to the above described principles is provided.Type: ApplicationFiled: July 25, 2007Publication date: December 10, 2009Applicant: CHROMOGENICS SWEDEN ABInventors: Richard Karmhag, Greger Gustavsson
-
Publication number: 20090262411Abstract: A method of manufacturing permanently curved electrochromic devices is presented. The method includes provision (210, 211) of two plane thermoplastic substrates at least partly coated by an electron conducting layer. The substrates are further at least partially coated (220, 221) with an electrochromic or a counter electrode layer. The coated substrates laminated (230) together with an adhesive electrolyte layer in the middle into an electrochromic laminate sheet. The electrochromic device is formed (240) by thermoforming the covered substrates into a permanent curvature, prior or after the further coating, prior to the laminating of the substrates or by thermoforming the electrochromic laminate sheet after the lamination. Once formed, the coated substrates or electrochromic device, respectively, permanently remains in its curved shape. Additional layer, such as bus bars and layers for chemically adaptation can be provided onto the substrates prior or after the thermoforming step.Type: ApplicationFiled: July 25, 2007Publication date: October 22, 2009Applicant: CHROMOGENICS SWEDEN ABInventors: Richard Karmhag, Greger Gustavsson
-
Patent number: 7099062Abstract: Electrochromic film with the general formula: ApBqOxXy wherein: —A is one or more of the elements from the group consisting of Ni, Ir, Cr, V, Mn, Fe, W, Mo, Ti, Co, Ce, Pr and Hf; —B is one or more of the elements from the group consisting of Mg, Ca, Sr, Ba, Nb, Al, Zr, Ta and Si; —O is oxygen; —X is an element from the group consisting of: H, F and N; and the ratio q/p is greater than 0.2 and less than 3.5, x is greater than 0.5 (p+q) and less than 5 (p+q), and y is equal to or greater than 0 and less than 2x. The film may further comprise an amount of Li, Na or K. The invention further relates to an electrochromic device comprising at least one layer of said electrochromic film.Type: GrantFiled: September 26, 2002Date of Patent: August 29, 2006Assignee: Forskarpatent I Uppsala ABInventors: Andris Azens, Claes-Göran Granqvist, Richard Karmhag, Jan Isidorsson, Esteban Damian Avendano Soto
-
Publication number: 20040234822Abstract: Electrochromic film with the general formula: ApBqOxXy wherein: -A is one or more of the elements from the group consisting of Ni, Ir, Cr, V, Mn, Fe, W, Mo, Ti, Co, Ce, Pr and Hf; —B is one or more of the elements from the group consisting of Mg, Ca, Sr, Ba, Nb, Al, Zr, Ta and Si; —O is oxygen; —X is an element from the group consisting of: H, F and N; and the ratio q/p is greater than 0.2 and less than 3.5, x is greater than 0.5(p+q) and less than 5(p+q), and y is equal to or greater than 0 and less than 2×. The film may further comprise an amount of Li, Na or K. The invention further relates to an electrochromic device comprising at least one layer of said electrochromic film.Type: ApplicationFiled: July 13, 2004Publication date: November 25, 2004Inventors: Andris Azens, Claes-Goran Granqvist, Richard Karmhag, Jan Isidorosson, Esteban Damian Avendano Soto