Patents by Inventor Richard Kremer

Richard Kremer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953801
    Abstract: A solid state optical beam steering device including a body of electro-optical material wherein the body of electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein the body has a first face and a second face opposite the first face, a first transparent resistive sheet on the first face of the body of electro optic material, wherein the first transparent resistive sheet has a first side and a second side, and a transparent conductor on the second face of the body of electro optic material, wherein the transparent conductor is coupled to the second side of the first transparent resistive sheet.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 9, 2024
    Assignee: HRL LABORATORIES, LLC
    Inventors: Richard Kremer, Kyung-Ah Son, Jeong-Sun Moon, Ryan Quarfoth
  • Patent number: 11579294
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip having a laser, an on-chip frequency shifter, a combiner and a first set of photodetectors. The laser generates a transmitted light beam and an associated local oscillator beam within the photonic chip. The on-chip frequency shifter shifts a frequency of the local oscillator beam. The combiner combines a reflected light beam with the frequency-shifted local oscillator beam, wherein the reflected light beam is a reflection of the transmitted light beam from the object to generate a first electronic signal at the first set of photodetectors. A processor obtains a first measurement of a parameter of the object from the first electronic signal. The vehicle includes a navigation system for navigating the vehicle with respect to the object using at least the first measurement of the parameter.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 14, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Talty, Keyvan Sayyah, Michael Mulqueen, Richard Kremer
  • Patent number: 11579303
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip, and a laser integrated into the photonic chip. The laser has a front facet located at a first aperture of the photonic chip to direct a transmitted light beam into free space. A reflected light beam that is a reflection of the transmitted light beam is received at the photonic chip and a parameter of the object is determined from a comparison of the transmitted light beam and the reflected light beam. A navigation system operates the vehicle with respect to the object based on a parameter of the object.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: February 14, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Keyvan Sayyah, Oleg Efimov, Biqin Huang, Raymond Sarkissian, James H. Schaffner, David Hammon, Richard Kremer, Timothy J. Talty, Michael Mulqueen, Pamela R. Patterson
  • Patent number: 11573297
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip having an aperture, one or more photodetectors and a circulator. A transmitted light beam generated within the photonic chip exits the photonic chip via the aperture and a reflected light beam enters the photonic chip via the aperture, the reflected light beam being a reflection of the transmitted light beam from the object. The one or more photodetectors measure the parameter of the object from at least the reflected light beam. The circulator integrated into the photonic chip directs the transmitted light beam toward the aperture and directs the reflected light beam from the aperture to the one or more photodetectors. A navigation system navigates the vehicle with respect to the object based on the parameter of the object.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: February 7, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Richard Kremer, Timothy J. Talty, Pamela R. Patterson, Biqin Huang, Michael Mulqueen
  • Patent number: 11493824
    Abstract: A solid state electrically variable focal length lens includes a plurality of concentric rings of electro-optical material, wherein the electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein each respective concentric ring further includes a transparent resistive sheet on a first face of the respective concentric ring, wherein the transparent resistive sheet extends along the first face, and a first voltage coupled between a first end and a second end of the transparent resistive sheet, wherein the first voltage may be varied to select an optical beam deflection angle.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: November 8, 2022
    Assignee: HRL LABORATORIES, LLC
    Inventors: Richard Kremer, Kyung-Ah Son, Jeong-Sun Moon, Ryan G. Quarfoth
  • Patent number: 11474206
    Abstract: A vehicle, Lidar system and method of detecting an object. The Lidar system includes an optical phase array and a mirror. The optical phase array directs a transmitted light beam generated by a laser along a first direction within a first plane. The mirror receives the transmitted light beam from the optical phase array and directs the transmitted light beam along a second direction within a second plane.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: October 18, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Talty, Michael Mulqueen, Richard Kremer
  • Publication number: 20220308419
    Abstract: A solid state electrically variable focal length lens includes a plurality of concentric rings of electro-optical material, wherein the electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein each respective concentric ring further includes a transparent resistive sheet on a first face of the respective concentric ring, wherein the transparent resistive sheet extends along the first face, and a first voltage coupled between a first end and a second end of the transparent resistive sheet, wherein the first voltage may be varied to select an optical beam deflection angle.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 29, 2022
    Applicant: HRL Laboratories, LLC
    Inventors: Richard KREMER, Kyung-Ah SON, Jeong-Sun MOON, Ryan G. QUARFOTH
  • Publication number: 20210364881
    Abstract: A solid state optical beam steering device including a body of electro-optical material wherein the body of electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein the body has a first face and a second face opposite the first face, a first transparent resistive sheet on the first face of the body of electro optic material, wherein the first transparent resistive sheet has a first side and a second side, and a transparent conductor on the second face of the body of electro optic material, wherein the transparent conductor is coupled to the second side of the first transparent resistive sheet.
    Type: Application
    Filed: March 19, 2021
    Publication date: November 25, 2021
    Applicant: HRL Laboratories, LLC
    Inventors: Richard KREMER, Kyung-Ah Son, Jeong-Sun Moon, Ryan Quarfoth
  • Publication number: 20210364884
    Abstract: A solid state electrically variable focal length lens includes a plurality of concentric rings of electro-optical material, wherein the electro-optical material comprises any material of a class of hydrogen-doped phase-change metal oxide and wherein each respective concentric ring further includes a transparent resistive sheet on a first face of the respective concentric ring, wherein the transparent resistive sheet extends along the first face, and a first voltage coupled between a first end and a second end of the transparent resistive sheet, wherein the first voltage may be varied to select an optical beam deflection angle.
    Type: Application
    Filed: March 2, 2021
    Publication date: November 25, 2021
    Applicant: HRL Laboratories, LLC
    Inventors: Richard KREMER, Kyung-Ah SON, Jeong-Sun MOON, Ryan G. QUARFOTH
  • Patent number: 11105900
    Abstract: A chip-scale LIDAR (light detection and ranging) system, optical package and LIDAR platform. The system includes a photonic chip, a laser associated with the photonic chip, an optical circulator, and a MEMS scanner. The laser, the optical circulator and the MEMS scanner are collinear. The photonic chip includes an edge coupler. The optical package includes a housing having an aperture, and a platform within the housing. The platform includes the laser, an optical circulator, and MEMS scanner.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 31, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Keyvan Sayyah, Pamela R. Patterson, Raymond Sarkissian, Richard Kremer, Oleg Efimov
  • Patent number: 10914822
    Abstract: A chip-scale lidar system includes a first light source to output a first signal, and a second light source to output a second signal. A transmit beam coupler provides an output signal for transmission that includes a portion of the first signal and a portion of the second signal, and receive beam coupler obtains a received signal resulting from reflection of the output signal by a target. The system includes a first and second set of photodetectors to obtain a first and second set of electrical currents from a first and second set of combined signals including a first and second portion of the received signal. A processor obtains Doppler information about the target from the second set of electrical currents and obtains range information about the target from the first set of electrical currents and the second set of electrical currents.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: February 9, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Richard Kremer, Keyvan Sayyah
  • Publication number: 20200103504
    Abstract: A vehicle, Lidar system and a method of detecting an object is disclosed. The Lidar system includes a first photonic chip, a second photonic chip, a mirror and a processor. The first photonic chip generates a first transmitted light beam, and the second photonic chip generates a second transmitted light beam. The mirror directs the first transmitted light beam over a first field of view and the second transmitted light beam over a second field of view, with an object being in at least one of the first and second fields of view. The processor determines a parameter of the object from at least one of a first reflection from the first field of view and a second reflection from the second field of view. A navigation system can be used to navigate the vehicle with respect to the object based on the parameter of the object.
    Type: Application
    Filed: September 25, 2019
    Publication date: April 2, 2020
    Inventors: Timothy J. Talty, Michael Mulqueen, Richard Kremer
  • Publication number: 20200103502
    Abstract: A vehicle, Lidar system and method of detecting an object. The Lidar system includes an optical phase array and a mirror. The optical phase array directs a transmitted light beam generated by a laser along a first direction within a first plane. The mirror receives the transmitted light beam from the optical phase array and directs the transmitted light beam along a second direction within a second plane.
    Type: Application
    Filed: September 25, 2019
    Publication date: April 2, 2020
    Inventors: Timothy J. Talty, Michael Mulqueen, Richard Kremer
  • Publication number: 20200088848
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip having an aperture, one or more photodetectors and a circulator. A transmitted light beam generated within the photonic chip exits the photonic chip via the aperture and a reflected light beam enters the photonic chip via the aperture, the reflected light beam being a reflection of the transmitted light beam from the object. The one or more photodetectors measure the parameter of the object from at least the reflected light beam. The circulator integrated into the photonic chip directs the transmitted light beam toward the aperture and directs the reflected light beam from the aperture to the one or more photodetectors. A navigation system navigates the vehicle with respect to the object based on the parameter of the object.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 19, 2020
    Inventors: Richard Kremer, Timothy J. Talty, Pamela R. Patterson, Biqin Huang, Michael Mulqueen
  • Publication number: 20200088884
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip, and a laser integrated into the photonic chip. The laser has a front facet located at a first aperture of the photonic chip to direct a transmitted light beam into free space. A reflected light beam that is a reflection of the transmitted light beam is received at the photonic chip and a parameter of the object is determined from a comparison of the transmitted light beam and the reflected light beam. A navigation system operates the vehicle with respect to the object based on a parameter of the object.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 19, 2020
    Inventors: Keyvan Sayyah, Oleg Efimov, Biqin Huang, Raymond Sarkissian, James H. Schaffner, David Hammon, Richard Kremer, Timothy J. Talty, Michael Mulqueen, Pamela R. Patterson
  • Publication number: 20200088878
    Abstract: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip having a laser, an on-chip frequency shifter, a combiner and a first set of photodetectors. The laser generates a transmitted light beam and an associated local oscillator beam within the photonic chip. The on-chip frequency shifter shifts a frequency of the local oscillator beam. The combiner combines a reflected light beam with the frequency-shifted local oscillator beam, wherein the reflected light beam is a reflection of the transmitted light beam from the object to generate a first electronic signal at the first set of photodetectors. A processor obtains a first measurement of a parameter of the object from the first electronic signal. The vehicle includes a navigation system for navigating the vehicle with respect to the object using at least the first measurement of the parameter.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 19, 2020
    Inventors: Timothy J. Talty, Keyvan Sayyah, Michael Mulqueen, Richard Kremer
  • Publication number: 20200049801
    Abstract: A chip-scale LIDAR (light detection and ranging) system, optical package and LIDAR platform. The system includes a photonic chip, a laser associated with the photonic chip, an optical circulator, and a MEMS scanner. The laser, the optical circulator and the MEMS scanner are collinear. The photonic chip includes an edge coupler. The optical package includes a housing having an aperture, and a platform within the housing. The platform includes the laser, an optical circulator, and MEMS scanner.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Keyvan Sayyah, Pamela R. Patterson, Raymond Sarkissian, Richard Kremer, Oleg Efimov
  • Patent number: 10463726
    Abstract: The present disclosure is directed to a method for treating cancer in a mammal by administering a PTHrP inhibitor to the mammal to inhibit expression of the PTHrP1-173 isoform of PTHrP in the mammal wherein the inhibitor is an antibody that specifically binds with an epitope of a C-terminal portion of the human PTHrP1-173 isoform and wherein the C-terminal portion consists of amino acid residues 151 to 169. The method is applicable to several types of cancer including breast, lung, prostate, melanoma and squamous cancer, either alone or in combination with other therapeutic agents.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: November 5, 2019
    Assignee: BIOCHROM PHARMA INC.
    Inventors: Richard Kremer, Dao Chao Huang
  • Publication number: 20190018110
    Abstract: A chip-scale lidar system includes a first light source to output a first signal, and a second light source to output a second signal. A transmit beam coupler provides an output signal for transmission that includes a portion of the first signal and a portion of the second signal, and receive beam coupler obtains a received signal resulting from reflection of the output signal by a target. The system includes a first and second set of photodetectors to obtain a first and second set of electrical currents from a first and second set of combined signals including a first and second portion of the received signal. A processor obtains Doppler information about the target from the second set of electrical currents and obtains range information about the target from the first set of electrical currents and the second set of electrical currents.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 17, 2019
    Inventors: Richard Kremer, Keyvan Sayyah
  • Patent number: 9057055
    Abstract: It is herewith provided methods of obtaining circulating cancer cells (CCCs)-enriched cellular populations based on the removal of CD45-positive cells from an apheresis product. It is also provided methods of obtaining circulating stem cells (CSCs)-enriched cellular population from a CCCs-enriched cellular population based on a selection either using the specific cellular markers or through culture. It is further provided methods of obtaining circulating tumor cells (CTCs)-enriched cellular population from a CCCs-enriched cellular population based on a selection using the specific cellular markers. It is also provided screening assays for the selection of (chemo)therapeutic agent as well as personalized medicine application based on drug sensitivity/resistance or cancer markers.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: June 16, 2015
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Catalin Mihalcioiu, Richard Kremer, Michael Sebag, Ramy Saleh, Jiarong Li