Patents by Inventor Richard L. Bechtel

Richard L. Bechtel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6483708
    Abstract: A clamping system decouples the clamping forces in an electrical circuit assembly coupled to a heatsink. A heatsink clamping assembly applies controllable and predictable force on the electrical circuit assembly including an integrated circuit device (“chip”). The applied force is controlled to effectively ensure intimate contact between the chip and the heatsink to facilitate efficient chip cooling. The force applied to the chip is decoupled from the much higher force required to clamp the electrical interposer interconnect structure between the electrical circuit assembly and the printed circuit board.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 19, 2002
    Assignee: Fujitsu Limited
    Inventors: Hassan O. Ali, Richard L. Bechtel
  • Patent number: 6459582
    Abstract: A clamping system decouples the clamping forces in an electrical circuit assembly coupled to a heatsink. A heatsink clamping assembly applies controllable and predictable force on the electrical circuit assembly including an integrated circuit device (“chip”). The applied force is controlled to effectively ensure intimate contact between the chip and the heatsink to facilitate efficient chip cooling. The force applied to the chip is decoupled from the much higher force required to clamp the electrical interposer interconnect structure between the electrical circuit assembly and the printed circuit board.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: October 1, 2002
    Assignee: Fujitsu Limited
    Inventors: Hassan O. Ali, Richard L. Bechtel
  • Publication number: 20020030972
    Abstract: A clamping system decouples the clamping forces in an electrical circuit assembly coupled to a heatsink. A heatsink clamping assembly applies controllable and predictable force on the electrical circuit assembly including an integrated circuit device (“chip”). The applied force is controlled to effectively ensure intimate contact between the chip and the heatsink to facilitate efficient chip cooling. The force applied to the chip is decoupled from the much higher force required to clamp the electrical interposer interconnect structure between the electrical circuit assembly and the printed circuit board.
    Type: Application
    Filed: November 21, 2001
    Publication date: March 14, 2002
    Inventors: Hassan O. Ali, Richard L. Bechtel
  • Patent number: 6150199
    Abstract: In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for for forming a field programmable gate array with antifuses.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: November 21, 2000
    Assignee: QuickLogic Corporation
    Inventors: Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas, Hua-Thye Chua, Andrew K. Chan, John M. Birkner
  • Patent number: 5989943
    Abstract: In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for for forming a field programmable gate array with antifuses.
    Type: Grant
    Filed: December 8, 1989
    Date of Patent: November 23, 1999
    Assignee: QuickLogic Corporation
    Inventors: Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas, Hua-Thye Chua, Andrew K. Chan, John M. Birkner
  • Patent number: 5780919
    Abstract: In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for forming a field programmable gate array with antifuses.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: July 14, 1998
    Assignee: QuickLogic Corporation
    Inventors: Hua-Thye Chua, Andrew K. Chan, John M. Birkner, Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas
  • Patent number: 5717230
    Abstract: A field programmable gate array has a programmable interconnect structure comprising metal signal conductors and metal-to-metal PECVD amorphous silicon antifuses. The metal-to-metal PECVD amorphous silicon antifuses have an unprogrammed resistance of at least 550 megaohms and a programmed resistance of under 200 ohms.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: February 10, 1998
    Assignee: QuickLogic Corporation
    Inventors: Hua-Thye Chua, Andrew K. Chan, John M. Birkner, Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas
  • Patent number: 5691949
    Abstract: This invention relates to the design and manufacture of a wafer-size integrated circuit. Lower layers of the wafer sized integrated circuit comprise electrically isolated repeating blocks such as logic elements or blocks of circuit elements. An upper conductive layer comprises data and address bus structures. A discretionary via layer located between the upper layer and the lower layers can be patterned to accomplish multiple purposes. Patterning of the via layer avoids connecting the bus structure to defective elements or blocks, establishes addresses of elements, and establishes the organization of the addressing structure and data structure (for a memory wafer the word length, number of banks of words, and number of words per bank). The via layer is patterned to connect the upper bus lines to selected regions in the lower metal levels after testing (testing uses conventional techniques) for good and bad elements.
    Type: Grant
    Filed: January 17, 1996
    Date of Patent: November 25, 1997
    Assignee: Tactical Fabs, Inc.
    Inventors: James W. Hively, Mammen Thomas, Richard L. Bechtel
  • Patent number: 5514884
    Abstract: This invention relates to the design and manufacture of a wafer-size integrated circuit. Lower layers of the wafer sized integrated circuit comprise electrically isolated repeating blocks such as logic elements or blocks of circuit elements. An upper conductive layer comprises data and address bus structures. A discretionary via layer located between the upper layer and the lower layers can be patterned to accomplish multiple purposes. Patterning of the via layer avoids connecting the bus structure to defective elements or blocks, establishes addresses of elements, and establishes the organization of the addressing structure and data structure (for a memory wafer the word length, number of banks of words, and number of words per bank). The via layer is patterned to connect the upper bus lines to selected regions in the lower metal levels after testing (testing uses conventional techniques) for good and bad elements.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: May 7, 1996
    Assignee: Tactical Fabs, Inc.
    Inventors: James W. Hively, Mammen Thomas, Richard L. Bechtel
  • Patent number: 5502315
    Abstract: In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for for forming a field programmable gate array with antifuses.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: March 26, 1996
    Assignee: QuickLogic Corporation
    Inventors: Hua-Thye Chua, Andrew K. Chan, John M. Birkner, Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas
  • Patent number: 5315130
    Abstract: This invention relates to the design and manufacture of a wafer-size integrated circuit. Lower layers of the wafer sized integrated circuit comprise electrically isolated repeating blocks such as logic elements or blocks of circuit elements. An upper conductive layer comprises data and address bus structures. A discretionary via layer located between the upper layer and the lower layers can be patterned. Patterning of the via layer avoids connecting the bus structure to defective elements or blocks, establishes addresses of elements, and establishes the organization of the addressing structure and data structure. The via layer is patterned to connect the upper bus lines to selected regions in the lower metal levels after testing for good and bad elements.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: May 24, 1994
    Assignee: Tactical Fabs, Inc.
    Inventors: James W. Hively, Mammen Thomas, Richard L. Bechtel
  • Patent number: 5252507
    Abstract: This invention relates to the design and manufacture of a wafer-size integrated circuit. Lower layers of the wafer sized integrated circuit comprise electrically isolated repeating blocks such as logic elements or blocks of circuit elements. An upper conductive layer comprises data and address bus structures. A discretionary via layer located between the upper layer and the lower layers can be patterned to accomplish multiple purposes. Patterning of the via layer avoids connecting the bus structure to defective elements or blocks, establishes addresses of elements, and establishes the organization of the addressing structure and data structure (for a memory wafer the word length, number of banks of words, and number of words per bank). The via layer is patterned to connect the upper bus lines to selected regions in the lower metal levels after testing (testing uses conventional techniques) for good and bad elements.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: October 12, 1993
    Assignee: Tactical Fabs, Inc.
    Inventors: James W. Hively, Mammen Thomas, Richard L. Bechtel
  • Patent number: 5223741
    Abstract: A package for housing a large scale semiconductor integrated circuit structure, such as a wafer or an assemblage of chips in a hybrid configuration, comprises a heat spreading and dissipating base plate to which the wafer or hybrid circuit is directly bonded. Electrical connections from the periphery of the package interior to the wafer are preferably made with equal length TAB (Tape Automated Bonding) strips connected to electrically conductive pads located along a diameter of the wafer or the centerline of the hybrid circuit. If hermeticity is desired, the integrated circuit structure is encircled by a boundary strip of sandwich construction through which signals are routed, and to which a lid is attached. For hermeticity, the integrated circuit structure is surrounded on all sides with a barrier combining metal and ceramic; the remainder of the package may be constructed from conventional printed circuit board materials.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: June 29, 1993
    Assignee: Tactical Fabs, Inc.
    Inventors: Richard L. Bechtel, Mammen Thomas, James W. Hively
  • Patent number: 5182632
    Abstract: A package for multiple semiconductor integrated circuit chips uses an interconnect structure manufactured by semiconductor processing techniques to provide dense interconnections between chips and to input/output terminals. Chips are thermally connected to a Kovar or molybdenum heatsink. The interconnect structure is constructed by fabricating multiple layers of interconnect metallization on an optically flat glass (or other dielectric) surface patterned into lines and separated by smoothed glass dielectric. The metallization lines are interconnected by vias and lead to pads which are connected to chip pads and to exterior pins or wiring. An interconnect frame allows access to the chips and the interconnect structure to effect wire bonding of the chips to the metallization and provide sealable cavities for the chips. Elastomeric connectors extend through and are aligned by the frame to connect pads on the interconnect structure top to traces on a mother board to which the package is mounted.
    Type: Grant
    Filed: December 2, 1991
    Date of Patent: January 26, 1993
    Assignee: Tactical Fabs, Inc.
    Inventors: Richard L. Bechtel, Mammen Thomas, James W. Hively
  • Patent number: 4836861
    Abstract: A point contact solar cell structure and method of manufacturing which provides metal contact from positive and negative bus bars to alternating n-wells and p-wells in a solar cell crystal. The solar cell spans two side-by-side metal bus bars. On the bottom surface of the cell crystal two side-by-side perforated metal layers contact wells of only one conductivity type. Holes in the perforated metal layers are located beneath wells of the opposite conductivity type. An insulated junction between the two perforated metal layers is located directly above the junction between the two side-by-side metal bus bars. Fingers from the perforated metal layer above one bus bar reach across and down to contact the opposite bus bar. Metal lines also reach from the bus bars up through the holes in the perforated contact layers and contact wells within the crystal. This way, all n-wells and p-wells have electrical contact to their respective bus bars.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: June 6, 1989
    Assignee: Tactical Fabs, Inc.
    Inventors: Douglas L. Peltzer, Richard L. Bechtel, Wen C. Ko, William T. Liggett