Patents by Inventor Richard L. Case
Richard L. Case has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230105688Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: September 2, 2022Publication date: April 6, 2023Inventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 11474309Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: GrantFiled: August 6, 2021Date of Patent: October 18, 2022Assignee: COMMSCOPE, INC. OF NORTH CAROLINAInventors: Timothy W. Anderson, Richard L. Case
-
Publication number: 20220026646Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: August 6, 2021Publication date: January 27, 2022Applicant: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 11112568Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: GrantFiled: November 5, 2020Date of Patent: September 7, 2021Assignee: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Publication number: 20210132301Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: November 5, 2020Publication date: May 6, 2021Applicant: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 10859773Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: GrantFiled: February 11, 2020Date of Patent: December 8, 2020Assignee: COMMSCOPE, INC. OF NORTH CAROLINAInventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 10823918Abstract: A method and system connects multiple cores within one fiber, e.g., a multi-core fiber (MCF), to multiple fibers with single-cores. The single-core fibers can then be terminated by traditional envelopes, such as a single core LC envelope. A connector holds the single-core fibers into a pattern that matches a pattern of all, or a sub group, of the individual cores of the MCF. The single-core fibers may all be terminated to individual connectors to form a fanout or breakout cable. Alternatively, the single-core fibers may extend to another connector wherein the single-core fibers are regrouped into a pattern to mate with the cores of another MCF, hence forming a jumper. One or more of the single core fibers may be terminated along the length of the jumper to form a jumper with one or more tap accesses.Type: GrantFiled: May 30, 2019Date of Patent: November 3, 2020Assignee: CommScope, Inc. of North CarolinaInventors: Jeffrey D. Nielson, Paul F. Kolesar, Gary F. Gibbs, Bradley Billman, Richard L. Case
-
Publication number: 20200319421Abstract: A module for interconnecting fiber optic cables and/or cords includes: a housing having a rear wall; a plurality of MPO adapters mounted in the rear wall; and forty-eight fiber optic adapters mounted to a front portion of the housing, the duplex adapters being operatively connected with the MPO adapters.Type: ApplicationFiled: April 6, 2020Publication date: October 8, 2020Inventor: Richard L. Case
-
Publication number: 20200257062Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Applicant: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 10613285Abstract: A module for interconnecting fiber optic cables and/or cords includes: a housing having a rear wall; a plurality of MPO adapters mounted in the rear wall; and forty-eight fiber optic adapters mounted to a front portion of the housing, the duplex adapters being operatively connected with the MPO adapters.Type: GrantFiled: February 5, 2018Date of Patent: April 7, 2020Assignee: CommScope, Inc. of North CarolinaInventor: Richard L. Case
-
Patent number: 10578812Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: GrantFiled: April 10, 2019Date of Patent: March 3, 2020Assignee: COMMSCOPE, INC. OF NORTH CAROLINAInventors: Timothy W. Anderson, Richard L. Case
-
Publication number: 20190331863Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: April 10, 2019Publication date: October 31, 2019Applicant: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Publication number: 20190285810Abstract: A method and system connects multiple cores within one fiber, e.g., a multi-core fiber (MCF), to multiple fibers with single-cores. The single-core fibers can then be terminated by traditional envelopes, such as a single core LC envelope. A connector holds the single-core fibers into a pattern that matches a pattern of all, or a sub group, of the individual cores of the MCF. The single-core fibers may all be terminated to individual connectors to form a fanout or breakout cable. Alternatively, the single-core fibers may extend to another connector wherein the single-core fibers are regrouped into a pattern to mate with the cores of another MCF, hence forming a jumper. One or more of the single core fibers may be terminated along the length of the jumper to form a jumper with one or more tap accesses.Type: ApplicationFiled: May 30, 2019Publication date: September 19, 2019Inventors: Jeffrey D. Nielson, Paul F. KOLESAR, Gary F. GIBBS, Bradley BILLMAN, Richard L. CASE
-
Patent number: 10317629Abstract: A method and system connects multiple cores within one fiber, e.g., a multi-core fiber (MCF), to multiple fibers with single-cores. The single-core fibers can then be terminated by traditional envelopes, such as a single core LC envelope. A connector holds the single-core fibers into a pattern that matches a pattern of all, or a sub group, of the individual cores of the MCF. The single-core fibers may all be terminated to individual connectors to form a fanout or breakout cable. Alternatively, the single-core fibers may extend to another connector wherein the single-core fibers are regrouped into a pattern to mate with the cores of another MCF, hence forming a jumper. One or more of the single core fibers may be terminated along the length of the jumper to form a jumper with one or more tap accesses.Type: GrantFiled: June 9, 2018Date of Patent: June 11, 2019Assignee: CommScope, Inc. of North CarolinaInventors: Jeffrey D. Nielson, Paul F. Kolesar, Gary F. Gibbs, Bradley Billman, Richard L. Case
-
Patent number: 10302878Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes an optical fiber bundle including a plurality of optical fibers, at least one strength member, and a jacket surrounding the optical fiber bundle and the strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers undergo a transition from a ribbonized configuration to a loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: GrantFiled: July 2, 2018Date of Patent: May 28, 2019Assignee: COMMSCOPE, INC. OF NORTH CAROLINAInventors: Timothy W. Anderson, Richard L. Case
-
Publication number: 20190041596Abstract: A module for interconnecting fiber optic cables and/or cords includes: a housing having a rear wall; a plurality of MPO adapters mounted in the rear wall; and forty-eight fiber optic adapters mounted to a front portion of the housing, the duplex adapters being operatively connected with the MPO adapters.Type: ApplicationFiled: February 5, 2018Publication date: February 7, 2019Applicant: COMMSCOPE, INC. OF NORTH CAROLINAInventor: Richard L. Case
-
Publication number: 20190004257Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion. The plurality of optical fibers undergo a transition from the ribbonized configuration to the loose, non-ribbonized configuration in the rigid portion of the connector assembly.Type: ApplicationFiled: July 2, 2018Publication date: January 3, 2019Applicant: CommScope, Inc. of North CarolinaInventors: Timothy W. Anderson, Richard L. Case
-
Patent number: 10139580Abstract: A retractable datacommunications rack includes: a mounting member configured to mount to a mounting structure; a linkage mounted to the mounting member; and an enclosure mounted on the linkage and configured to provide locations for datacommunications interconnections. The linkage is configured to move the enclosure between a retracted raised position and a lowered working position.Type: GrantFiled: November 3, 2015Date of Patent: November 27, 2018Assignee: CommScope Technologies LLCInventors: Charles T. Crain, Richard L. Case, Joseph C. Livingston
-
Publication number: 20180292615Abstract: A method and system connects multiple cores within one fiber, e.g., a multi-core fiber (MCF), to multiple fibers with single-cores. The single-core fibers can then be terminated by traditional envelopes, such as a single core LC envelope. A connector holds the single-core fibers into a pattern that matches a pattern of all, or a sub group, of the individual cores of the MCF. The single-core fibers may all be terminated to individual connectors to form a fanout or breakout cable. Alternatively, the single-core fibers may extend to another connector wherein the single-core fibers are regrouped into a pattern to mate with the cores of another MCF, hence forming a jumper. One or more of the single core fibers may be terminated along the length of the jumper to form a jumper with one or more tap accesses.Type: ApplicationFiled: June 9, 2018Publication date: October 11, 2018Inventors: Jeffrey D. NIELSON, Paul F. Kolesar, Gary F. Gibbs, Bradley Billman, Richard L. Case
-
Patent number: 10012805Abstract: A connectorized fiber optic cabling assembly includes a loose tube fiber optic cable and a connector assembly. The cable has a termination end and includes: an optical fiber bundle including a plurality of optical fibers; at least one strength member; and a jacket surrounding the optical fiber bundle and the at least one strength member. The connector assembly includes a rigid portion and defines a fiber passage. The connector assembly is mounted on the termination end of the cable such that the optical fiber bundle extends through at least a portion of the fiber passage. The plurality of optical fibers of the optical fiber bundle have a ribbonized configuration in the rigid portion of the connector assembly and a loose, non-ribbonized configuration outside the rigid portion.Type: GrantFiled: June 5, 2017Date of Patent: July 3, 2018Assignee: COMMSCOPE, INC. OF NORTH CAROLINAInventors: Timothy W. Anderson, Richard L. Case