Patents by Inventor Richard L. Stocks

Richard L. Stocks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8617975
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 31, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Patent number: 8367482
    Abstract: Methods for fabricating contacts of semiconductor device structures include forming a dielectric layer over a semiconductor substrate with active-device regions spaced at a first pitch, forming a first plurality of substantially in-line apertures over every second active-device region of the active-device regions, and forming a second plurality of substantially in-line apertures laterally offset from apertures of the first plurality over active-device regions over which apertures of the first plurality are not located. Methods for designing semiconductor device structures include forming at least two laterally offset sets of contacts over a substrate including active-device regions at a first pitch, the contacts being formed at a second pitch that is about twice the first pitch.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: February 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: John K. Lee, Hyuntae Kim, Richard L. Stocks, Luan Tran
  • Publication number: 20120252153
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Patent number: 8211787
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Publication number: 20110223761
    Abstract: Methods for fabricating contacts of semiconductor device structures include forming a dielectric layer over a semiconductor substrate with active-device regions spaced at a first pitch, forming a first plurality of substantially in-line apertures over every second active-device region of the active-device regions, and forming a second plurality of substantially in-line apertures laterally offset from apertures of the first plurality over active-device regions over which apertures of the first plurality are not located. Methods for designing semiconductor device structures include forming at least two laterally offset sets of contacts over a substrate including active-device regions at a first pitch, the contacts being formed at a second pitch that is about twice the first pitch.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 15, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: John K. Lee, Hyuntae Kim, Richard L. Stocks, Luan Tran
  • Patent number: 7960797
    Abstract: A semiconductor device structure includes staggered contacts to facilitate small pitches between active-device regions and conductive lines while minimizing one or both of misalignment during fabrication of the contacts and contact resistance between sections of the contacts. The contacts of one row communicate with every other active-device region and are staggered relative to the contacts of another row, which communicate with the remaining active-device regions. Each contact may include a relatively large contact plug with a relatively large upper surface to provide a relatively large amount of tolerance as a contact hole for an upper portion of the contact that is formed. The contact holes may be formed substantially simultaneously with trenches for conductive traces, such as bit lines, in a dual damascene process. Intermediate structures are also disclosed, as are methods for designing semiconductor device structures.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 14, 2011
    Assignee: Micron Technology, Inc.
    Inventors: John K. Lee, Hyuntae Kim, Richard L. Stocks, Luan Tran
  • Patent number: 7915736
    Abstract: Methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects are disclosed herein. In one embodiment, a method of forming an interconnect in a microfeature workpiece includes forming a hole extending through a terminal and a dielectric layer to at least an intermediate depth in a substrate of a workpiece. The hole has a first lateral dimension in the dielectric layer and a second lateral dimension in the substrate proximate to an interface between the dielectric layer and the substrate. The second lateral dimension is greater than the first lateral dimension. The method further includes constructing an electrically conductive interconnect in at least a portion of the hole and in electrical contact with the terminal.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, William M. Hiatt, Richard L. Stocks
  • Publication number: 20110070679
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Publication number: 20090017576
    Abstract: Some embodiments include methods of forming semiconductor constructions in which a semiconductor material sidewall is along an opening, a protective organic material is over at least one semiconductor material surface, and the semiconductor material sidewall and protective organic material are both exposed to an etch utilizing at least one fluorine-containing composition. The etch is selective for the semiconductor material relative to the organic material, and reduces sharpness of at least one projection along the semiconductor material sidewall. In some embodiments, the opening is a through wafer opening, and subsequent processing forms one or more materials within such through wafer opening to form a through wafer interconnect. In some embodiments, the opening extends to a sensor array, and the protective organic material is comprised by a microlens system over the sensor array. Subsequent processing may form a macrolens structure across the opening.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 15, 2009
    Inventors: Swarnal Borthakur, Richard L. Stocks
  • Publication number: 20080054483
    Abstract: A semiconductor device structure includes staggered contacts to facilitate small pitches between active-device regions and conductive lines while minimizing one or both of misalignment during fabrication of the contacts and contact resistance between sections of the contacts. The contacts of one row communicate with every other active-device region and are staggered relative to the contacts of another row, which communicate with the remaining active-device regions. Each contact may include a relatively large contact plug with a relatively large upper surface to provide a relatively large amount of tolerance as a contact hole for an upper portion of the contact is formed. The contact holes may be formed substantially simultaneously with trenches for conductive traces, such as bit lines, in a dual damascene process. Intermediate structures are also disclosed, as are methods for designing semiconductor device structures.
    Type: Application
    Filed: August 29, 2006
    Publication date: March 6, 2008
    Inventors: John K. Lee, Hyuntae Kim, Richard L. Stocks, Luan Tran
  • Publication number: 20080050871
    Abstract: Methods for removing material from one layer of a semiconductor device structure, such as an etch stop layer beneath a capacitor container, without substantially removing material from an overlying layer that includes the same material, such as a protective or reinforcing lattice over the capacitor container, include employing process parameters in which material may be removed from features, as desired, while a sufficient amount of polymer is formed and deposited on features from which material removal is not desired. Methods for designing suitable processes are also disclosed, as are semiconductor device structures that are formed using such processes.
    Type: Application
    Filed: August 25, 2006
    Publication date: February 28, 2008
    Inventor: Richard L. Stocks
  • Patent number: 7262134
    Abstract: Methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects are disclosed herein. In one embodiment, a method of forming an interconnect in a microfeature workpiece includes forming a hole extending through a terminal and a dielectric layer to at least an intermediate depth in a substrate of a workpiece. The hole has a first lateral dimension in the dielectric layer and a second lateral dimension in the substrate proximate to an interface between the dielectric layer and the substrate. The second lateral dimension is greater than the first lateral dimension. The method further includes constructing an electrically conductive interconnect in at least a portion of the hole and in electrical contact with the terminal.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, William M. Hiatt, Richard L. Stocks
  • Patent number: 6680255
    Abstract: A plasma etching method includes forming polymer material over at least some internal surfaces of a plasma etch chamber and forming polymer material over at least some surfaces of a semiconductor wafer received within the plasma etch chamber. Substantially all polymer material is plasma etched from the chamber internal surfaces while at least some polymer material remains on the wafer. In another aspect, a semiconductor wafer is positioned on a wafer receiver within a plasma etch chamber. A photoresist layer has previously been formed thereon and has openings formed therethrough. First plasma etching is conducted through openings formed in the photoresist layer with a gas comprising carbon and a halogen to form openings in material on the wafer. A first polymer comprising carbon and the halogen forms over at least some internal surfaces of the plasma etch chamber during the first plasma etching.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: January 20, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Patent number: 6660644
    Abstract: A plasma etching method includes forming polymer material over at least some internal surfaces of a plasma etch chamber and forming polymer material over at least some surfaces of a semiconductor wafer received within the plasma etch chamber. Substantially all polymer material is plasma etched from the chamber internal surfaces while at least some polymer material remains on the wafer. In another aspect, a semiconductor wafer is positioned on a wafer receiver within a plasma etch chamber. A photoresist layer has previously been formed thereon and has openings formed therethrough. First plasma etching is conducted through openings formed in the photoresist layer with a gas comprising carbon and a halogen to form openings in material on the wafer. A first polymer comprising carbon and the halogen forms over at least some internal surfaces of the plasma etch chamber during the first plasma etching.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: December 9, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Publication number: 20020031878
    Abstract: A plasma etching method includes forming polymer material over at least some internal surfaces of a plasma etch chamber and forming polymer material over at least some surfaces of a semiconductor wafer received within the plasma etch chamber. Substantially all polymer material is plasma etched from the chamber internal surfaces while at least some polymer material remains on the wafer. In another aspect, a semiconductor wafer is positioned on a wafer receiver within a plasma etch chamber. A photoresist layer has previously been formed thereon and has openings formed therethrough. First plasma etching is conducted through openings formed in the photoresist layer with a gas comprising carbon and a halogen to form openings in material on the wafer. A first polymer comprising carbon and the halogen forms over at least some internal surfaces of the plasma etch chamber during the first plasma etching.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 14, 2002
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Publication number: 20010046779
    Abstract: A plasma etching method includes forming polymer material over at least some internal surfaces of a plasma etch chamber and forming polymer material over at least some surfaces of a semiconductor wafer received within the plasma etch chamber. Substantially all polymer material is plasma etched from the chamber internal surfaces while at least some polymer material remains on the wafer. In another aspect, a semiconductor wafer is positioned on a wafer receiver within a plasma etch chamber. A photoresist layer has previously been formed thereon and has openings formed therethrough. First plasma etching is conducted through openings formed in the photoresist layer with a gas comprising carbon and a halogen to form openings in material on the wafer. A first polymer comprising carbon and the halogen forms over at least some internal surfaces of the plasma etch chamber during the first plasma etching.
    Type: Application
    Filed: October 29, 1999
    Publication date: November 29, 2001
    Inventors: KEVIN G. DONOHOE, RICHARD L. STOCKS
  • Patent number: 6291359
    Abstract: Methods of forming contact openings and methods of controlling the degree of taper of contact openings are described. In one implementation, a layer is first etched through a contact mask opening using a first set of etching conditions. The etching conditions provide a first degree of sidewall taper from vertical, if etching completely through the layer. After the first etching, the layer is second etched through the contact mask opening using a second set of etching conditions. The second set of etching conditions provide a second degree of sidewall taper from vertical, if etching completely through the layer. The second degree of sidewall taper is different from the first degree of taper. In another embodiment, a material through which a contact opening is to be etched to a selected depth is formed over a substrate. A masking layer having an opening therein is formed over the material.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: September 18, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Patent number: 6258728
    Abstract: In but one aspect of the invention, a plasma etching method includes forming polymer material over at least some internal surfaces of a dual powered plasma etch chamber while first plasma etching an outer surface of a semiconductor wafer received by a wafer holder within the chamber. After the first plasma etching, second plasma etching is conducted of polymer material from the chamber internal surfaces while providing a bias power at the wafer holder effective to produce an ac peak voltage at the wafer surface of greater than zero and less than 200 Volts. In one implementation, second plasma etching is conducted of polymer material from the chamber internal surfaces while providing a bias power at the wafer holder of greater than zero Watts and less or equal to about 1 Watt/cm2 of wafer surface area on one side.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: July 10, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Patent number: 6093655
    Abstract: A plasma etching method includes forming polymer material over at least some internal surfaces of a plasma etch chamber and forming polymer material over at least some surfaces of a semiconductor wafer received within the plasma etch chamber. Substantially all polymer material is plasma etched from the chamber internal surfaces while at least some polymer material remains on the wafer. In another aspect, a semiconductor wafer is positioned on a wafer receiver within a plasma etch chamber. A photoresist layer has previously been formed thereon and has openings formed therethrough. First plasma etching is conducted through openings formed in the photoresist layer with a gas comprising carbon and a halogen to form openings in material on the wafer. A first polymer comprising carbon and the halogen forms over at least some internal surfaces of the plasma etch chamber during the first plasma etching.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: July 25, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks
  • Patent number: 6074957
    Abstract: Methods of forming contact openings and methods of controlling the degree of taper of contact openings are described. In one implementation, a layer is first etched through a contact mask opening using a first set of etching conditions. The etching conditions provide a first degree of sidewall taper from vertical, if etching completely through the layer. After the first etching, the layer is second etched through the contact mask opening using a second set of etching conditions. The second set of etching conditions provide a second degree of sidewall taper from vertical, if etching completely through the layer. The second degree of sidewall taper is different from the first degree of taper. In another embodiment, a material through which a contact opening is to be etched to a selected depth is formed over a substrate. A masking layer having an opening therein is formed over the material.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: June 13, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Richard L. Stocks