Patents by Inventor Richard Levesque

Richard Levesque has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916541
    Abstract: Disclosed is a filter bank module having a substrate, an antenna port terminal, and a filter bank die. The filter bank die is fixed to the substrate and includes a first acoustic wave (AW) filter having a first antenna terminal coupled to the antenna port terminal and a first filter terminal, wherein the first AW filter is configured to pass a first passband and attenuate frequencies outside the first passband, and a second AW filter having a second filter terminal, and a second antenna terminal coupled to the first antenna terminal to effectively diplex signals that pass through the first AW filter and the second AW filter, wherein the second AW filter is configured to pass a second passband that is spaced from the first passband to minimize interference between first bandpass and the second bandpass while attenuating frequencies outside the second passband.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: February 27, 2024
    Assignee: Qorvo US, Inc.
    Inventors: Gangadhar Burra, Bror Peterson, Richard Perkins, Chris Levesque
  • Patent number: 11878451
    Abstract: In an aspect, a method of filling a plurality of cooling holes in an airfoil component, the method comprises injecting a curable composition into a fill channel such that the curable composition flows through the fill channel to the plurality of cooling holes; forming a plurality of beads of the curable composition on a surface of the component over the plurality of cooling holes; directing a radiation to the respective beads in directions parallel to the respective central axes of the cooling holes associated with the respective beads to cure curable composition of the respective beads; and heating the component to cure the curable composition located in the fill channel.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 23, 2024
    Assignee: DYMAX
    Inventors: Richard Levesque, Gregory Arcangeli, Keith Plimpton, Eric Wilmot, Michael Cunningham, Virginia P. Hogan
  • Publication number: 20200353657
    Abstract: In an aspect, a method of filling a plurality of cooling holes in an airfoil component, the method comprises injecting a curable composition into a fill channel such that the curable composition flows through the fill channel to the plurality of cooling holes; forming a plurality of beads of the curable composition on a surface of the component over the plurality of cooling holes; directing a radiation to the respective beads in directions parallel to the respective central axes of the cooling holes associated with the respective beads to cure curable composition of the respective beads; and heating the component to cure the curable composition located in the fill channel.
    Type: Application
    Filed: February 21, 2020
    Publication date: November 12, 2020
    Inventors: Richard Levesque, Gregory Arcangeli, Keith Plimpton, Eric Wilmot, Michael Cunningham, Virginia P. Hogan
  • Patent number: 9702268
    Abstract: In a device for controlling a working fluid with low freezing point circulating in a closed loop working on a Rankine cycle, the loop includes a compression/circulation pump for the fluid in liquid form, a heat exchanger swept by a hot source for evaporation of the fluid, expansion machine for the fluid in vapour form, a cooling exchanger swept by a cold source for condensation of the working fluid, a working fluid tank and working fluid circulation lines. The working fluid tank is connected to a depression generator.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 11, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Pascal Smague, Pierre Leduc, Richard Levesque
  • Patent number: 9585236
    Abstract: A Sn vapor EUV LLP source system for EUV lithography is disclosed. The system generates a Sn vapor column from a supply of Sn liquid. The Sn column has a Sn-atom density of <1019 atoms/cm3 and travels at or near sonic speeds. The system also has a Sn vapor condenser arranged to receive the Sn vapor column and condense the Sn vapor to form recycled Sn liquid. A pulse laser irradiates a section of the Sn vapor column. Each pulse generates an under-dense Sn plasma having an electron density of <1019 electrons/cm3, thereby allowing the under-dense Sn plasma substantially isotropically emit EUV radiation.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: February 28, 2017
    Assignee: Media Lario SRL
    Inventors: Natale M. Ceglio, Daniel Stearns, Richard Levesque
  • Publication number: 20150013338
    Abstract: The present invention relates to a device for controlling a working fluid with low freezing point circulating in a closed loop (10) working on a Rankine cycle, said loop comprising a compression/circulation pump (12) for the fluid in liquid form, a heat exchanger (18) swept by a hot source (24) for evaporation of said fluid, expansion means (30) for the fluid in vapour form, a cooling exchanger (42) swept by a cold source (F) for condensation of the working fluid, a working fluid tank (48) and working fluid circulation lines (52, 54, 56, 58, 60, 62). According to the invention, tank (48) is connected to a depression generator (50).
    Type: Application
    Filed: December 14, 2012
    Publication date: January 15, 2015
    Inventors: Pascal Smague, Pierre Leduc, Richard Levesque
  • Publication number: 20140326904
    Abstract: A Sn vapor EUV LLP source system for EUV lithography is disclosed. The system generates a Sn vapor column from a supply of Sn liquid. The Sn column has a Sn-atom density of <1019 atoms/cm3 and travels at or near sonic speeds. The system also has a Sn vapor condenser arranged to receive the Sn vapor column and condense the Sn vapor to form recycled Sn liquid. A pulse laser irradiates a section of the Sn vapor column. Each pulse generates an under-dense Sn plasma having an electron density of <1019 electrons/cm3, thereby allowing the under-dense Sn plasma substantially isotropically emit EUV radiation.
    Type: Application
    Filed: April 24, 2014
    Publication date: November 6, 2014
    Applicant: Media Lario S.R.L.
    Inventors: Natale M. Ceglio, Daniel Stearns, Richard Levesque
  • Patent number: 8746975
    Abstract: Systems, assemblies and methods for thermally managing a grazing incidence collector (GIC) for EUV lithography applications are disclosed. The GIC thermal management assembly includes a GIC mirror shell interfaced with a jacket to form a sealed chamber. An open cell, heat transfer (OCHT) material is disposed within the metal chamber and is thermally and mechanically bonded with the GIC mirror shell and jacket. A coolant is flowed in an azimuthally symmetric fashion through the OCHT material between input and output plenums to effectuate cooling when the GIC thermal management assembly is used in a GIC mirror system configured to receive and form collected EUV radiation from an EUV radiation source.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 10, 2014
    Assignee: Media Lario S.R.L.
    Inventors: Giovanni Bianucci, Fabio Zocchi, Robert Banham, Marco Pedrali, Boris Grek, Natale Ceglio, Dean Shough, Gordon Yue, Daniel Stearns, Richard A. Levesque, Giuseppe Valsecchi
  • Patent number: 8686381
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Sn vapor from a Sn vapor source of the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device may be used to increase the amount of EUV radiation provided to the intermediate focus. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: April 1, 2014
    Assignee: Media Lario S.R.L.
    Inventors: Richard Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Patent number: 8344339
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a rotating Sn rod in the target portion to generate the EUV radiation. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 1, 2013
    Assignee: Media Lario S.R.L.
    Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Patent number: 8258485
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon liquid in the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: September 4, 2012
    Assignee: Media Lario SRL
    Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Publication number: 20120212719
    Abstract: Systems, assemblies and methods for thermally managing a grazing incidence collector (GIC) for EUV lithography applications are disclosed. The GIC thermal management assembly includes a GIC mirror shell interfaced with a jacket to form a sealed chamber. An open cell, heat transfer (OCHT) material is disposed within the metal chamber and is thermally and mechanically bonded with the GIC mirror shell and jacket. A coolant is flowed in an azimuthally symmetric fashion through the OCHT material between input and output plenums to effectuate cooling when the GIC thermal management assembly is used in a GIC mirror system configured to receive and form collected EUV radiation from an EUV radiation source.
    Type: Application
    Filed: January 23, 2012
    Publication date: August 23, 2012
    Inventors: Giovanni Bianucci, Fabio Zocchi, Robert Banham, Marco Pedrali, Boris Grek, Natale Ceglio, Dean Shough, Daniel Stearns, Richard A. Levesque, Gordon Yue, Giuseppe Valsecchi
  • Publication number: 20120050706
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon ice provided by the target portion to an irradiation location. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Publication number: 20120050707
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a Sn wire provided by the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Publication number: 20120050708
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates a rotating Sn rod in the target portion to generate the EUV radiation. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Richard A. Levesque, Natale M. Ceglio, Glovanni Nocerino, Fabio Zocchi
  • Publication number: 20120050704
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Xenon liquid in the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device having at least one funnel element may be used to increase the amount of EUV radiation provided to the intermediate focus and/or directed to a downstream illuminator. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Richard A. Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Publication number: 20110318694
    Abstract: A source-collector module (SOCOMO) for generating a laser-produced plasma (LPP) that emits EUV radiation, and a grazing-incidence collector (GIC) mirror arranged relative to the LPP and having an input end and an output end. The LPP is formed using an LPP target system having a light source portion and a target portion, wherein a pulsed laser beam from the light source portion irradiates Sn vapor from a Sn vapor source of the target portion. The GIC mirror is arranged relative to the LPP to receive the EUV radiation at its input end and focus the received EUV radiation at an intermediate focus adjacent the output end. A radiation collection enhancement device may be used to increase the amount of EUV radiation provided to the intermediate focus. An EUV lithography system that utilizes the SOCOMO is also disclosed.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Inventors: Richard Levesque, Natale M. Ceglio, Giovanni Nocerino, Fabio Zocchi
  • Publication number: 20050109128
    Abstract: The present invention relates to a method and to a device for sampling gaseous compounds contained in a gas stream, notably in diluted exhaust gases from an internal-combustion engine. According to the invention, the method consists in providing passage of the gas stream through at least one sampling channel (26, 26a; 80, 80a) containing an adsorbent that traps the polycyclic aromatic hydrocarbons in gaseous form.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 26, 2005
    Inventors: Michel Pasquereau, Jean-Francois Papagni, Patrick Thoral, Richard Levesque, Laurent Dayde
  • Patent number: 6513397
    Abstract: A unit for sampling aldehydes and ketones contained in diluted exhaust gases from thermal combustion engines has a specific trapping circuit and a simulation circuit that simulates the specific trapping circuit. The specific trapping circuit and the simulation circuit are arranged in parallel so that the diluted gases can be passed for some time in the simulation circuit (5) before they are passed into the specific trapping circuit wherein aldehydes and ketones are trapped.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Michel Pasquereau, Jean-François Papagni, Richard Levesque, Laurent Dayde
  • Publication number: 20020043116
    Abstract: A unit for sampling aldehydes and ketones contained in diluted exhaust gases from thermal combustion engines has a specific trapping circuit and a simulation circuit that simulates the specific trapping circuit. The specific trapping circuit and the simulation circuit are arranged in parallel so that the diluted gases can be passed for some time in the simulation circuit (5) before they are passed into the specific trapping circuit wherein aldehydes and ketones are trapped.
    Type: Application
    Filed: December 11, 2001
    Publication date: April 18, 2002
    Inventors: Michel Pasquereau, Jean-Francois Papagni, Richard Levesque, Laurent Dayde