Patents by Inventor Richard M. Foster

Richard M. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6624431
    Abstract: The present invention provides a high gain collimator producing generally uniform intensity profiles for use in lithography and other applications. A focusing optic is also provided. The collimator includes a reflector and guide channel. The guide channel preferably includes polycapillary tubes and/or microchannel plates. The polycapillary tubes are used to collimate or focus the central portion of the x-ray beam in a circular, elliptic, square, or rectangular shape. A conical, parabolic resonance reflector or grazing incidence reflector with a shape similar to the polycapillary collimator is used to increase the solid angle collected and produce a circular, square, etc. annular x-ray beam whose inside dimensions are approximately equal to the exit dimensions of the polycapillary collimator.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 23, 2003
    Assignee: Jmar Research, Inc.
    Inventors: Richard M. Foster, I. C. Edmond Turcu
  • Patent number: 6307913
    Abstract: A shaped plasma discharge system is provided in which a shaped radiation source emits radiation at a desired frequency and in a desired shape. In one embodiment, a laser source provides an output beam at a desired intensity level to shaping optics. The shaping optics alters the output beam into a desired shaped illumination field. In an alternate embodiment, plural laser sources provide plural output beams and the shaping optics can produce a compound illumination field. The illumination field strikes a target material forming a plasma of the desired shape that emits radiation with a desired spatial distribution, at a desired wavelength, preferably in the x-ray, soft x-ray, extreme ultraviolet or ultraviolet spectra. In another embodiment an electric discharge generates the required shaped radiation field. The shaped emitted radiation proceeds through an optical system to a photoresist coated wafer, imprinting a pattern on the wafer.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: October 23, 2001
    Assignee: Jmar Research, Inc.
    Inventors: Richard M. Foster, Edmond Turcu, Jose M. Sasian, Harry Rieger, James H. Morris
  • Patent number: 5790574
    Abstract: A high average power, high brightness solid state laser system. We first produce a seed laser beam with a short pulse duration. A laser amplifier amplifies the seed beam to produce an amplified pulse laser beam which is tightly focused to produce pulses with brightness levels in excess of 10.sup.11 Watts/cm.sup.2. Preferred embodiments produce an amplified pulse laser beam having an average power in the range of 1 kW, an average pulse frequency of 12,000 pulses per second with pulses having brightness levels in excess of 10.sup.14 Watts/cm.sup.2 at a 20 .mu.m diameter spot which may be steered rapidly to simulate a larger spot size. Alternately, a kHz system with several (for example, seven) beams (from amplifiers arranged in parallel) can each be focused to 20 .mu.m and clustered to create effective spot sizes of 100 to 200 .mu.m. These beams are useful in producing X-ray sources for lithography.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: August 4, 1998
    Assignee: IMAR Technology Company
    Inventors: Harry Rieger, Henry Shields, Richard M. Foster
  • Patent number: 5742634
    Abstract: A laser system which generates pulses with a duration in the range of about 60 to 300 ps at an energy level of up to a few milli-Joules per pulse (mJ/p) with near diffraction limited beam quality. A laser crystal is pumped (excited) by diode lasers. A resonator having at least two mirror surfaces defines a beam path passing through the laser crystal. The beam path in the resonator is periodically blocked by a first optical shutter permitting pump energy to build up in the laser crystal, except for a short period near the end of each pumping period. While the first optical shutter is open a second optical shutter blocks the light in the resonator except for periodic subnano-second intervals, the intervals being spaced such that at least one light pulse traveling at the speed of light in the resonator is able to make a plurality of transits through the resonator, increasing in intensity by extracting energy from the excited laser crystal on each transit.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: April 21, 1998
    Assignee: Imar Technology Co.
    Inventors: Harry Rieger, Henry Shields, Richard M. Foster
  • Patent number: 5491707
    Abstract: A high average power, high brightness solid state laser system. We first produce seed laser beam with a short pulse duration and frequency in excess of 1,000 pulses per second. A laser amplifier amplifies the seed pulse beam to produce an amplified pulse laser beam which is focused to produce pulses with brightness levels in excess of 10.sup.11 Watts/cm.sup.2. Preferred embodiments produce an amplified pulse laser beam having an average power in the range of 1 kW, an average pulse frequency of 12,000 pulses per second with pulses having brightness levels in excess of 10.sup.14 Watts/cm.sup.2 at a 20 .mu.m diameter spot which is steered rapidly to simulate a larger spot size. These beams are useful in producing X-ray sources for lithography.In one preferred embodiment, the seed beam is produced in a mode locked Nd:YAG oscillator pumped by a diode array with the frequency of the pulses being reduced by an electro-optic modulator.
    Type: Grant
    Filed: November 15, 1994
    Date of Patent: February 13, 1996
    Assignee: Jamar Technologies Co.
    Inventors: Harry Rieger, Henry Shields, Richard M. Foster
  • Patent number: 5434875
    Abstract: A high average power, high brightness solid state laser system. A laser produces a first pulse laser beam with a high pulse frequency. A pulse spacing selector removes from the first pulse laser beam more than 80 percent of the pulses to produce a second pulse laser beam having a series of periodically spaced short pulses in excess of 1,000 pulses per second. A laser amplifier amplifies the second pulse train to produce an amplified pulse laser beam which is focused to produce pulses with brightness levels in excess of 10.sup.11 Watts/cm.sup.2. A preferred embodiment produces an amplified pulse laser beam having an average power in the range of 1 KW, an average pulse frequency of 12,000 pulses per second with pulses having brightness levels in excess of 10.sup.14 Watts/cm.sup.2 at a 20 .mu.m diameter spot which is steered rapidly to simulate a larger spot size. These beams are useful in producing X-ray sources for lithography.
    Type: Grant
    Filed: August 24, 1994
    Date of Patent: July 18, 1995
    Assignee: Tamar Technology Co.
    Inventors: Harry Rieger, Henry Shields, Richard M. Foster