Patents by Inventor Richard M. Murray

Richard M. Murray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004536
    Abstract: Provided herein are methods and arrangements and related cell-free biomolecular breadboards configured to design, build, implement, debug, and/or test a genetic circuit to be operated in a target environment, by testing in a cell-free system under conditions of the target environment, molecular components of the genetic circuit and/or combinations thereof to select the molecular components and/or combinations thereof of a genetic circuit operative in the target environment.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: May 11, 2021
    Assignee: California Institute of Technology
    Inventors: Zachary Z. Sun, Richard M. Murray, Vipul Singhal
  • Patent number: 10665115
    Abstract: A method, device, framework, and system provide the ability to control an unmanned aerial vehicle (UAV) to avoid obstacle collision. Range data of a real-world scene is acquired using range sensors (that provide depth data to visible objects). The range data is combined into an egospace representation (consisting of pixels in egospace). An apparent size of each of the visible objects is expanded based on a dimension of the UAV. An assigned destination in the real world scene based on world space is received and transformed into egospace coordinates in egospace. A trackable path from the UAV to the assigned destination through egospace that avoids collision with the visible objects (based on the expanded apparent sizes of each of the visible objects) is generated. Inputs that control the UAV to follow the trackable path are identified.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 26, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Anthony T. S. Fragoso, Larry H. Matthies, Roland Brockers, Richard M. Murray
  • Publication number: 20170193830
    Abstract: A method, device, framework, and system provide the ability to control an unmanned aerial vehicle (UAV) to avoid obstacle collision. Range data of a real-world scene is acquired using range sensors (that provide depth data to visible objects). The range data is combined into an egospace representation (consisting of pixels in egospace). An apparent size of each of the visible objects is expanded based on a dimension of the UAV. An assigned destination in the real world scene based on world space is received and transformed into egospace coordinates in egospace. A trackable path from the UAV to the assigned destination through egospace that avoids collision with the visible objects (based on the expanded apparent sizes of each of the visible objects) is generated. Inputs that control the UAV to follow the trackable path are identified.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 6, 2017
    Applicant: California Institute of Technology
    Inventors: Anthony T. S. Fragoso, Larry H. Matthies, Roland Brockers, Richard M. Murray
  • Publication number: 20170024512
    Abstract: Provided herein are methods and arrangements and related cell-free biomolecular breadboards configured to design, build, implement, debug, and/or test a genetic circuit to be operated in a target environment, by testing in a cell-free system under conditions of the target environment, molecular components of the genetic circuit and/or combinations thereof to select the molecular components and/or combinations thereof of a genetic circuit operative in the target environment.
    Type: Application
    Filed: February 17, 2016
    Publication date: January 26, 2017
    Inventors: Zachary Z. SUN, Richard M. MURRAY, Vipul SINGHAL
  • Patent number: 5984625
    Abstract: A compressor is disclosed having a characteristic modifier, such as air injection, adapted to modify an operating characteristic of the compressor in order to reduce the bandwidth and rate limit requirements of the compressor. The compressor includes an actuator, such as a bleed valve, whose bandwidth and rate limit parameters meet the corresponding reduced requirements of the compressor. The actuator is adapted to stabilize the compressor with respect to a likely condition in the compressor which would tend to make the compressor operate in a less stable manner. This makes it possible to stabilize the compressor using a more readily available actuator having lower bandwidth and rate limit parameters.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: November 16, 1999
    Assignee: California Institute of Technology
    Inventors: Richard M. Murray, Simon Yeung