Patents by Inventor Richard Newcomb

Richard Newcomb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9812304
    Abstract: A magnetron sputtering electrode for use in a rotatable cylindrical magnetron sputtering device, the electrode including a cathode body defining a magnet receiving chamber and a cylindrical target surrounding the cathode body. The target is rotatable about the cathode body. A magnet arrangement is received within the magnet receiving chamber, the magnet arrangement including a plurality of magnets. A shunt is secured to the cathode body and proximate to a side of the magnet arrangement, the shunt extending in a plane substantially parallel to the side of the magnet arrangement. A method of fine-tuning a magnetron sputtering electrode in a rotatable cylindrical magnetron sputtering device is also disclosed.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: November 7, 2017
    Assignee: ANGSTROM SCIENCES, INC.
    Inventors: Mark A. Bernick, Richard Newcomb
  • Patent number: 9476118
    Abstract: An adjustable shunt assembly for use with a sputtering magnetron having at least two magnets spaced from one another and disposed with respect to a sputtering target having a sputtering surface. The magnets define a longitudinal axis and the adjustable shunt assembly moves a shunt between the two magnets for altering the magnetic field therebetween. A transporter is used for moving the shunt so that such movement may be occurred without disassembling the components of the magnetron and such movement may also be done remotely. A method for moving such shunts is also disclosed.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: October 25, 2016
    Assignee: Angstrom Sciences, Inc.
    Inventor: Richard Newcomb
  • Patent number: 9349576
    Abstract: A magnet arrangement which is usable as both a retrofit magnetic arrangement in a rotatable cylindrical magnetron sputtering electrode as well as a drive assembly in communication with the electrode for delivering high current into a target surface without adding highly incremental cost to the overall design of the electrode. The electrode includes a cathode body defining a magnet receiving chamber, a rotatable cylindrical target surrounding the cathode body, wherein the target is rotatable about the cathode body. The cathode body further defines a magnet arrangement received within the magnet receiving chamber, wherein the magnet arrangement comprised of a plurality of magnets wherein at least one of the magnets is a profiled magnet having a contoured top portion.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: May 24, 2016
    Assignee: Angstrom Sciences, Inc.
    Inventors: Mark A. Bernick, Richard Newcomb
  • Publication number: 20150194294
    Abstract: A magnetron sputtering electrode for use in a rotatable cylindrical magnetron sputtering device, the electrode including a cathode body defining a magnet receiving chamber and a cylindrical target surrounding the cathode body. The target is rotatable about the cathode body. A magnet arrangement is received within the magnet receiving chamber, the magnet arrangement including a plurality of magnets. A shunt is secured to the cathode body and proximate to a side of the magnet arrangement, the shunt extending in a plane substantially parallel to the side of the magnet arrangement. A method of fine-tuning a magnetron sputtering electrode in a rotatable cylindrical magnetron sputtering device is also disclosed.
    Type: Application
    Filed: January 12, 2015
    Publication date: July 9, 2015
    Inventors: Mark A. Bernick, Richard Newcomb
  • Patent number: 8951394
    Abstract: A magnetron sputtering electrode for use in a rotatable cylindrical magnetron sputtering device, the electrode including a cathode body defining a magnet receiving chamber and a cylindrical target surrounding the cathode body. The target is rotatable about the cathode body A magnet arrangement is received within the magnet receiving chamber, the magnet arrangement including a plurality of magnets. A shunt is secured to the cathode body and proximate to a side of the magnet arrangement, the shunt extending in a plane substantially parallel to the side of the magnet arrangement. A method of fine-tuning a magnetron sputtering electrode in a rotatable cylindrical magnetron sputtering device is also disclosed.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: February 10, 2015
    Assignee: Angstrom Sciences, Inc.
    Inventors: Mark A. Bernick, Richard Newcomb
  • Patent number: 8845868
    Abstract: A seal and fixation assembly includes a cylindrical target having an inside surface with a shoulder that forms a stop within the target. A target retaining ring is disposed about the target. A seal plate is disposed within the target and engages the stop and the inside surface of the target. An end cap is disposed on the end of the target and includes a portion with a beveled surface within the target. A sealing element is disposed between the inside surface of the target, the seal plate, and the beveled surface of the end cap. A clamp is disposed over the end cap and the target retaining ring. Engagement of the end cap and the target retaining ring with the clamp causes the end cap to move within the target toward the stop to compress the sealing element between the target, the seal plate, and the beveled surface.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 30, 2014
    Assignee: Angstrom Sciences, Inc.
    Inventor: Richard Newcomb
  • Publication number: 20140158523
    Abstract: An adjustable shunt assembly for use with a sputtering magnetron having at least two magnets spaced from one another and disposed with respect to a sputtering target having a sputtering surface. The magnets define a longitudinal axis and the adjustable shunt assembly moves a shunt between the two magnets for altering the magnetic field therebetween. A transporter is used for moving the shunt so that such movement may be occurred without disassembling the components of the magnetron and such movement may also be done remotely. A method for moving such shunts is also disclosed.
    Type: Application
    Filed: November 4, 2013
    Publication date: June 12, 2014
    Applicant: Angstrom Sciences, Inc.
    Inventor: Richard Newcomb
  • Patent number: 8349156
    Abstract: Disclosed invention uses a coaxial microwave antenna to enhance ionization in PVD or IPVD. The coaxial microwave antenna increases plasma density homogeneously adjacent to a sputtering cathode or target that is subjected to a power supply. The coaxial microwave source generates electromagnetic waves in a transverse electromagnetic (TEM) mode. The invention also uses a magnetron proximate the sputtering cathode or target to further enhance the sputtering. Furthermore, for high utilization of expensive target materials, a target can rotate to improve the utilization efficiency. The target comprises dielectric materials, metals, or semiconductors. The target also has a cross section being substantially symmetric about a central axis that the target rotates around. The target may have a substantially circular or annular a cross section.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: January 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Richard Newcomb
  • Publication number: 20120146504
    Abstract: A seal and fixation assembly includes a cylindrical target having an inside surface with a shoulder that forms a stop within the target. A target retaining ring is disposed about the target. A seal plate is disposed within the target and engages the stop and the inside surface of the target. An end cap is disposed on the end of the target and includes a portion with a beveled surface within the target. A sealing element is disposed between the inside surface of the target, the seal plate, and the beveled surface of the end cap. A clamp is disposed over the end cap and the target retaining ring. Engagement of the end cap and the target retaining ring with the clamp causes the end cap to move within the target toward the stop to compress the sealing element between the target, the seal plate, and the beveled surface.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 14, 2012
    Applicant: ANGSTROM SCIENCES, INC.
    Inventor: Richard Newcomb
  • Publication number: 20110186427
    Abstract: A magnetron sputtering electrode for use in a rotatable cylindrical magnetron sputtering device, the electrode including a cathode body defining a magnet receiving chamber and a cylindrical target surrounding the cathode body. The target is rotatable about the cathode body A magnet arrangement is received within the magnet receiving chamber, the magnet arrangement including a plurality of magnets. A shunt is secured to the cathode body and proximate to a side of the magnet arrangement, the shunt extending in a plane substantially parallel to the side of the magnet arrangement. A method of fine-tuning a magnetron sputtering electrode in a rotatable cylindrical magnetron sputtering device is also disclosed.
    Type: Application
    Filed: September 21, 2010
    Publication date: August 4, 2011
    Applicant: Angstrom Sciences, Inc.
    Inventors: Mark A. Bernick, Richard Newcomb
  • Patent number: 7832348
    Abstract: Disclosed is a watercraft for use in combination with a PWC or suitable shallow draft propulsion system. The watercraft is designed to operate in emergency conditions where flood waters leave an uncharted bottom that may be as little as twelve inches deep or conceal a submerged object. The watercraft includes a ramp allowing for the ease of loading including wheelchair bound and bed-bound patients as well as supplies such as water, food, medical supplies, generators, and water filtration systems. The watercraft is based upon two pontoons having a storable floor and support structure, the support structure overlays a portion of each pontoon.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 16, 2010
    Inventor: Richard Newcomb
  • Publication number: 20090314631
    Abstract: A magnet assembly for a magnetron sputtering device having circular, linear or other types of planar targets including two permanent magnets and an electromagnet, e.g., electromagnetic coil between the permanent magnets associated with a sputtering target of a target assembly. An electrical control circuit is arranged to selectively adjust at least the current level and the direction of current to the electromagnet to alter the magnetic fields of the magnet assembly thereby encompassing the entire portions of the sputtering target, including the extreme inner and outer portions of the sputtering target to optimize the target uniformity and the sputtered film uniformity on a substrate. Methods for operating the magnet assembly of the magnetron sputtering devices, for optimizing the target utilization and sputtered film uniformity on a substrate, and for operating the magnetron sputtering process in a reactive gas environment to form an insulating or dielectric thin film are also provided.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Applicant: ANGSTROM SCIENCES, INC.
    Inventors: Mark A. Bernick, Richard Newcomb
  • Publication number: 20090283400
    Abstract: Disclosed invention uses a coaxial microwave antenna to enhance ionization in PVD or IPVD. The coaxial microwave antenna increases plasma density homogeneously adjacent to a sputtering cathode or target that is subjected to a power supply. The coaxial microwave source generates electromagnetic waves in a transverse electromagnetic (TEM) mode. The invention also uses a magnetron proximate the sputtering cathode or target to further enhance the sputtering. Furthermore, for high utilization of expensive target materials, a target can rotate to improve the utilization efficiency. The target comprises dielectric materials, metals, or semiconductors. The target also has a cross section being substantially symmetric about a central axis that the target rotates around. The target may have a substantially circular or annular a cross section.
    Type: Application
    Filed: May 14, 2008
    Publication date: November 19, 2009
    Applicant: Applied Materials, Inc.
    Inventors: MICHAEL W. STOWELL, Richard Newcomb
  • Publication number: 20090145345
    Abstract: Disclosed is a watercraft for use in combination with a PWC or suitable shallow draft propulsion system. The watercraft is designed to operate in emergency conditions where flood waters leave an uncharted bottom that may be as little as twelve inches deep or conceal a submerged object. The watercraft includes a ramp allowing for the ease of loading including wheelchair bound and bed-bound patients as well as supplies such as water, food, medical supplies, generators, and water filtration systems. The watercraft is based upon two pontoons having a storable floor and support structure, the support structure overlays a portion of each pontoon.
    Type: Application
    Filed: October 24, 2008
    Publication date: June 11, 2009
    Inventor: Richard Newcomb
  • Publication number: 20080012460
    Abstract: A magnet arrangement which is usable as both a retrofit magnetic arrangement in a rotatable cylindrical magnetron sputtering electrode as well as a drive assembly in communication with the electrode for delivering high current into a target surface without adding highly incremental cost to the overall design of the electrode. The electrode includes a cathode body defining a magnet receiving chamber, a rotatable cylindrical target surrounding the cathode body, wherein the target is rotatable about the cathode body. The cathode body further defines a magnet arrangement received within the magnet receiving chamber, wherein the magnet arrangement comprised of a plurality of magnets wherein at least one of the magnets is a profiled magnet having a contoured top portion.
    Type: Application
    Filed: March 14, 2007
    Publication date: January 17, 2008
    Applicant: Angstrom Sciences, Inc.
    Inventors: Mark Bernick, Richard Newcomb
  • Publication number: 20060096855
    Abstract: A quick attachment system for cathodes is described. One embodiment of the system comprises a laterally movable support shaft; a flange connected to the support shaft, the flange including a cavity locking element and a shoulder locking element; a bordering separator connectable to a target pipe, the bordering separator comprising ring extensions for engaging the cavity locking element of flange; and a straining ring configured to engage the bordering separator and the shoulder locking element of the flange to thereby secure the laterally movable shaft to the target pipe.
    Type: Application
    Filed: November 5, 2004
    Publication date: May 11, 2006
    Inventors: Richard Newcomb, Scott Trube, Tom Riso, Ken Kawakami, Dietmar Marquardt, Andreas Sauer
  • Publication number: 20060065524
    Abstract: A rotatable target for sputtering is described. This target can include a target backing tube having an exterior surface; a backing layer in contact with the exterior surface of the target backing tube, the backing layer being electrically conductive and thermally non-conductive; and a plurality of target cylinders located around the target backing tube and in contact with the backing layer.
    Type: Application
    Filed: September 30, 2004
    Publication date: March 30, 2006
    Inventors: Richard Newcomb, Doug Robinson
  • Publication number: 20050224343
    Abstract: A system and method for coating a substrate is described. One embodiment includes a high-power sputtering system with a power coupler configured to deliver power to a rotatable target. The power coupler is positioned in a vacuum chamber or between the bearings and the rotatable target outside the vacuum chamber to limit the current that flows through the bearing.
    Type: Application
    Filed: April 8, 2004
    Publication date: October 13, 2005
    Inventors: Richard Newcomb, Michael Geisler
  • Patent number: 5616225
    Abstract: In one group of embodiments, two or more small anodes are spaced apart from one another in a magnetron, with some aspect of their electrical power being individually controlled in a manner to control a density profile across a plasma. In another group of embodiments, the same effect is obtained by mechanically moving one or more small anodes or anode masks. When used in a magnetron having either a rotating cylindrical cathode or a stationary planar cathode and designed to sputter films of material onto a substrate, the uniformity of the rate of deposition across the substrate is improved. Also, adverse effects of sputtering dielectric materials are reduced.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: April 1, 1997
    Assignee: The BOC Group, Inc.
    Inventors: Peter A. Sieck, Richard Newcomb, Terry A. Trumbly, Stephen C. Schulz