Patents by Inventor Richard O. Moore

Richard O. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8137531
    Abstract: An integrated process for producing liquid fuel and lubricating base oil from Fischer-Tropsch derived products which comprises (a) recovering separately from a Fischer-Tropsch synthesis reactor a Fischer-Tropsch wax and condensate; (b) hydroprocessing the wax and recovering a waxy intermediate and a hydrogen-rich normally, liquid fraction; (c) mixing the condensate and at least part of the hydrogen-rich normally liquid fraction to form a Fischer-Tropsch condensate mixture; (d) hydrotreating the condensate mixture and recovering a Fischer-Tropsch condensate product; (e) recovering from the condensate product a liquid fuel; (f) separately dewaxing the waxy intermediate and recovering a base oil; (g) hydrofinishing the base oil; (h) recovering from the hydrofinishing zone a stabilized base oil and a hydrogen-rich gas; and (i) recycling the hydrogen-rich gas to the wax hydroprocessing zone wherein the total pressure in the hydrofinishing zone is at least as high as the total pressure in the wax hydroprocessing zo
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: March 20, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Richard O. Moore, Jr.
  • Patent number: 8022108
    Abstract: Novel methods of treating a Fischer-Tropsch product stream with an acid are disclosed. Such methods are capable of removing contamination from the Fischer-Tropsch product stream such that plugging of the catalyst beds of a subsequent hydroprocessing step is substantially reduced.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: September 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lucy M. Bull, Donald L. Kuehne, William L. Schinski, Philippus Rudolf Heydenrich, Richard O. Moore, Jr., Quintin John Beukes, Gianni Guilio Eligio Bacco Rodriquez
  • Patent number: 7507326
    Abstract: The present invention is directed to a method for hydroprocessing Fischer-Tropsch products. The invention in particular relates to an integrated method for producing liquid fuels from a hydrocarbon stream provided by Fischer-Tropsch synthesis. The method involves separating the Fischer-Tropsch products into a light fraction (FT condensate) and a heavy fraction. The heavy fraction is subjected to hydrocracking conditions, preferably through multiple catalyst beds, to reduce the chain length. The products of the hydrocracking reaction following the last catalyst bed are subjected to a separation step. The lighter material is combined with the Fischer-Tropsch condensate and hydrotreated. The hydrotreatment conditions hydrogenate double bonds, reduce oxygenates to paraffins, and desulfurize and denitrify the products. The heavier material from the separation step is sent to the lube plant for hydroisomerization, or is subjected to subsequent fraction steps to produce fuels and middle distillates.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: March 24, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Darush Farshid, Richard O. Moore, Jr.
  • Patent number: 7150823
    Abstract: Novel methods of treating a Fischer-Tropsch derived hydrocarbon stream with an active filtering catalyst are disclosed. Such methods are capable of removing soluble (and ultra-fine particulate) contamination, fouling agents, and/or plugging precursors from the Fischer-Tropsch derived hydrocarbon stream such that plugging of the catalyst beds of a subsequent hydroprocessing process is substantially avoided.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: December 19, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jerome F. Mayer, Andrew Rainis, Richard O. Moore, Jr.
  • Patent number: 6908543
    Abstract: A method of minimizing the formation of polymers and other heavy molecular weight products upon heating of a hydrocarbon stream in a hydroconversion process is described. Specifically, sufficient hydrogen-containing gas is added to the hydrocarbon stream before heating to reduce its fouling tendency. The hydrogen-containing gas is added in an amount less than about 500 standard Cubic Feet per Barrel (SCFB). preferably less than about 100 SCFB and more preferably less than about 50 SCFB.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: June 21, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventor: Richard O. Moore, Jr.
  • Patent number: 6849664
    Abstract: The present invention relates to the use of deactivatable biocides in cooling water systems of industrial processes that require dissipation of heat. The present invention relates to methods of inhibiting growth and reproduction of microorganisms in the cooling water comprising adding the deactivatable biocides to the cooling water and irreversibly deactivating the deactivatable biocides before or upon disposal of the cooling water.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: February 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Richard O. Moore, Jr.
  • Publication number: 20040232045
    Abstract: A process for producing a premium Fischer-Tropsch diesel fuel which comprises (a) hydroprocessing a waxy Fischer-Tropsch feed to remove the oxygenates that are present in the feed, whereby a first Fischer-Tropsch intermediate product is produced with reduced olefins and oxygenates relative to the Fischer-Tropsch feed; (b) separating the first Fischer-Tropsch intermediate product in a separation zone into a heavy Fischer-Tropsch fraction and a light Fischer-Tropsch fraction under controlled separation conditions; (c) hydroisomerizing the heavy Fischer-Tropsch fraction to improve the cold flow properties of the heavy Fischer-Tropsch fraction and recovering an isomerized heavy Fischer-Tropsch fraction; (d) mixing the isomerized heavy Fischer-Tropsch fraction with at least a portion of the light Fischer-Tropsch fraction of (b); and (e) recovering from the blend a Fischer-Tropsch derived diesel product meeting a target value for at least one pre-selected specification for diesel fuel.
    Type: Application
    Filed: June 30, 2004
    Publication date: November 25, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventors: Christopher A. Simmons, David R. Johnson, Jerome F. Mayer, John M. Rosenbaum, Richard O. Moore, Russell R. Krug
  • Patent number: 6709569
    Abstract: Embodiments of the present invention are directed to methods for hydroprocessing Fischer-Tropsch products. The embodiments in particular are related to integrated methods for producing liquid fuels from a hydrocarbon stream provided by a Fischer-Tropsch synthesis process. The methods involves separating the Fischer-Tropsch products into a light fraction and a heavy fraction. The light fraction is pre-conditioned to remove contaminants such as CO2 prior to being subjected to hydroprocessing, either separately, or after having been being recombined with the heavy fraction. Any of the hydroprocessing steps may be accomplished in a single reactor.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 23, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Paul D. Cambern
  • Patent number: 6656342
    Abstract: A method for hydroprocessing hydrocarbon products, preferably Fischer-Tropsch products, and a reactor useful for performing the method, are disclosed. The reactor includes one or more first catalyst beds comprising a catalyst useful for conducting relatively severe hydroprocessing and one or more second catalyst beds comprising a catalyst useful for conducting relatively mild hydroprocessing. The second catalyst beds are located at a position in the reactor where they can receive the products from the first catalyst bed(s), at least one of each of the first and second catalyst bed(s) comprises a catalyst grading scheme sufficient to remove at least a portion of any particulates from their respective feeds, and the reactor is set up to receive hydrocarbon feeds at a position above or within the first catalyst bed(s) and above or within the second catalyst bed(s).
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: December 2, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ben D. Smith, Richard O. Moore, Jr.
  • Patent number: 6635681
    Abstract: A process is disclosed for preparing a finished fuel product from a stabilized product mixture, which is produced from the effluent of a Fischer-Tropsch synthesis process. In the process, a Fischer-Tropsch synthesis process is conducted at a site which is remote from the market site where the products from the process are ultimately marketed. The Fischer-Tropsch effluent product is hydroprocessed, and the hydroprocessed effluent separated to remove a C4− fraction and to yield a stabilized product mixture which can be exported to the market site. At the market site, the stabilized product mixture is fractionated into at least one finished fuel product. A heavy fraction may also be recovered at the market site for separation into at least one lubricating oil base stock and then conversion at hydroisomerization conditions to form a lubricating base oil.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: October 21, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Mark Schnell
  • Publication number: 20030127399
    Abstract: The present invention relates to the use of deactivatable biocides in cooling water systems of industrial processes that require dissipation of heat. The present invention relates to methods of inhibiting growth and reproduction of microorganisms in the cooling water comprising adding the deactivatable biocides to the cooling water and irreversibly deactivating the deactivatable biocides before or upon disposal of the cooling water.
    Type: Application
    Filed: October 18, 2001
    Publication date: July 10, 2003
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Richard O. Moore
  • Patent number: 6589415
    Abstract: The present invention is directed to a method for hydroprocessing Fischer-Tropsch products. The invention in particular relates to an integrated method for producing liquid fuels from a hydrocarbon stream provided by Fischer-Tropsch synthesis. The method involves separating the Fischer-Tropsch products into a light fraction with normal boiling points below 700° F. and including predominantly C5-20 components and a heavy fraction with normal boiling points above 650° F. and including predominantly C20+ components. The heavy fraction is subjected to hydrocracking conditions, preferably through multiple catalyst beds, to reduce the chain length. The light fraction is used as all or part of a quench fluid between each catalyst bed.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: July 8, 2003
    Assignee: Chevron U.S.A., Inc.
    Inventors: Ben D. Smith, Krishniah Parimi, Richard O. Moore, Jr.
  • Publication number: 20030119924
    Abstract: Embodiments of the present invention are directed to methods for hydroprocessing Fischer-Tropsch products. The embodiments in particular are related to integrated methods for producing liquid fuels from a hydrocarbon stream provided by a Fischer-Tropsch synthesis process. The methods involves separating the Fischer-Tropsch products into a light fraction and a heavy fraction. The light fraction is pre-conditioned to remove contaminants such as CO2 prior to being subjected to hydroprocessing, either separately, or after having been being recombined with the heavy fraction. Any of the hydroprocessing steps may be accomplished in a single reactor.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Richard O. Moore, Paul D. Cambern
  • Patent number: 6583186
    Abstract: The present invention is directed to a method for hydroprocessing Fischer-Tropsch products. The invention in particular relates to an integrated method for producing liquid fuels from a hydrocarbon stream provided by Fischer-Tropsch synthesis. The method involves separating the Fischer-Tropsch products into a light fraction and a heavy fraction. The heavy fraction is subjected to hydrocracking conditions, preferably through multiple catalyst beds, to reduce the chain length. The products of the hydrocracking reaction following the last catalyst bed, optionally after a hydroisomerization step, are combined with the light fraction. The combined fractions are hydrotreated, and, optionally, hydroisomerized. The hydrotreatment conditions hydrogenate double bonds, reduce oxygenates to paraffins, and desulfurize and denitrify the products. Hydroisomerization converts at least a portion of the linear paraffins into isoparaffins.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: June 24, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Richard O. Moore, Jr.
  • Patent number: 6566411
    Abstract: An integrated process for producing desulfurized hydroprocessed products from Fischer-Tropsch synthesis is disclosed. The process involves isolating and desulfurizing a methane-rich stream from a natural gas source in a first separation zone and a desulfurization zone. The methane-rich stream is converted to syngas and subjected to a hydrocarbon synthesis step, for example, a Fischer-Tropsch synthesis step. The products from the hydrocarbon synthesis step typically include a C4− fraction, a C5-20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone, typically via fractional distillation. The C4− fraction can be recycled through the first separation zone to provide a second methane-rich fraction for conversion to synthesis gas. The C4− fraction can optionally be treated, for example, with hydrotreatment or hydroisomerization catalysts and conditions before or after passage through the first separation zone.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: May 20, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder, Grant C. Hilton, Clive Jones
  • Patent number: 6531515
    Abstract: An integrated process for improved hydrocarbon recovery from a natural gas resource is disclosed. A methane-rich stream, an LPG stream and optionally a C5+ stream are isolated from a natural gas source in a first separation zone and desulfurized. The methane-rich stream is converted to syngas and subjected to hydrocarbon synthesis, for example, Fischer-Tropsch synthesis. The products from the hydrocarbon synthesis typically include a C4− fraction, a C5-C20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone. The C4− fraction is recycled through the first separation zone to provide methane for conversion to synthesis gas and an additional LPG fraction. The C4− fraction can be treated, for example, with hydrotreating or hydroisomerization catalysts and conditions before or after the separation.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 11, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder, Grant C. Hilton, Clive Jones, Randall B. Pruet
  • Patent number: 6515033
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. The process involves isolating a non-sulfur containing methane stream and a sulfur-containing C5+ stream from a natural gas source. The methane stream is converted to syngas and further reacted to form a higher molecular weight hydrocarbon product stream. The C5-20 hydrocarbons in that product stream are hydroprocessed along with at least a portion of the C5+ stream from the natural gas source. The presence of sulfur in the C5+ stream minimizes the hydrogenolysis that would otherwise occur if the C5-20 hydrocarbons were hydroprocessed without added sulfur-containing compounds or other hydrocracking suppressants. The result is an improved yield of C5-20 hydrocarbons relative to when the hydroprocessing step does not include hydrocracking suppressants.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Patent number: 6515034
    Abstract: An integrated process for producing a hydrocarbon stream, preferably including predominantly C5-20 normal and iso-paraffins, is disclosed. The process involves isolating a C4− stream and, optionally a C5+ stream (“natural gas condensate”) from a natural gas source. The C4− stream is converted to syngas, and the syngas used in a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. In one embodiment, one or more fractions from the hydrocarbon synthesis are blended with one or more crude oil derived fractions, and, optionally, the natural gas condensate, such that the overall sulfur content of the blend is less than about 200 ppm. If necessary, the crude oil fractions and/or natural gas condensate can be treated to lower the sulfur content so that the blend has an acceptable sulfur level. The fraction from the hydrocarbon synthesis may include, for example, C5-20 hydrocarbons, C20+ hydrocarbons, or C5+ hydrocarbons.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Patent number: 6515032
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. A de-sulfurized methane-rich stream and a natural gas condensate are isolated from the natural gas source. The methane-containing stream is converted into syngas, which is then subjected to a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. One or more fractions from the hydrocarbon synthesis are blended with the natural gas condensate for co-hydroprocessing, where the blended stream includes less than about 200 ppm sulfur. Olefins and oxygenates are hydrotreated to form paraffins. Paraffins are subjected to hydroisomerization conditions to form isoparaffins. Hydrocarbons with chain lengths above a desired value, for example, C24, are hydrocracked. The hydrogenolysis that would otherwise form undesired C1-4 fractions is minimized by judicious selection of noble metal catalysts.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Publication number: 20020173556
    Abstract: A process is disclosed for preparing a finished fuel product from a stabilized product mixture, which is produced from the effluent of a Fischer-Tropsch synthesis process. In the process, a Fischer-Tropsch synthesis process is conducted at a site which is remote from the market site where the products from the process are ultimately marketed. The Fischer-Tropsch effluent product is hydroprocessed, and the hydroprocessed effluent separated to remove a C4− fraction and to yield a stabilized product mixture which can be exported to the market site. At the market site, the stabilized product mixture is fractionated into at least one finished fuel product. A heavy fraction may also be recovered at the market site for separation into at least one lubricating oil base stock and then conversion at hydroisomerization conditions to form a lubricating base oil.
    Type: Application
    Filed: May 21, 2001
    Publication date: November 21, 2002
    Inventors: Richard O. Moore, Mark Schnell