Patents by Inventor Richard Owczarzy

Richard Owczarzy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150141635
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Application
    Filed: December 20, 2014
    Publication date: May 21, 2015
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Publication number: 20150011744
    Abstract: The invention pertains to modifications for antisense oligonucleotides, wherein the modifications are used to improve stability and provide protection from nuclease degradation. The modifications could also be incorporated into double-stranded nucleic acids, such as synthetic siRNAs and miRNAs.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventors: Mark Aaron Behlke, Richard Owczarzy, Yong You, Joseph Alan Walder, Kim Lennox
  • Patent number: 8916345
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 23, 2014
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Publication number: 20130236967
    Abstract: The invention pertains to modifications for antisense oligonucleotides, wherein the modifications are used to improve stability and provide protection from nuclease degradation. The modifications could also be incorporated into double-stranded nucleic acids, such as synthetic siRNAs and miRNAs.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 12, 2013
    Applicant: INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: Mark Aaron Behlke, Kimberly Ann Lennox, Ashley Mae Jacobi, Richard Owczarzy, Joseph Alan Walder
  • Publication number: 20120123751
    Abstract: The invention relates to methods and systems for predicting or estimating the melting temperature of duplex nucleic acids, in the presence of divalent cations, particularly duplexes of oligonucleotides which may be used as, for example, but not limited to primers or probes in PCR and/or hybridization assays. The methods and algorithms use novel formulas, having terms and coefficients that are functions of the particular nucleotide sequence, to estimate the effect of divalent cation salt conditions on the melting temperature.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 17, 2012
    Applicant: INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: Richard Owczarzy, Bernardo Moreira, Yong You, Mark Aaron Behlke, Joseph Alan Walder
  • Publication number: 20120108799
    Abstract: The invention pertains to modifications for antisense oligonucleotides, wherein the modifications are used to improve stability and provide protection from nuclease degradation. The modifications could also be incorporated into double-stranded nucleic acids, such as synthetic siRNAs and miRNAs.
    Type: Application
    Filed: September 7, 2011
    Publication date: May 3, 2012
    Applicant: INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: Mark Aaron Behlke, Richard Owczarzy, Yong You, Joseph Alan Walder, Kim Lennox
  • Publication number: 20120029891
    Abstract: The present invention provides methods that more accurately predict melting temperatures for duplex oligomers. The invented methods predict the Tm of chimeric duplexes containing various amounts of locked nucleic acid modifications in oligonucleotide strands.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: Integrated DNA Technologies, Inc.
    Inventors: Mark Behlke, Richard Owczarzy, Scott D. Rose, Andrey Tataurov, Yong You
  • Patent number: 8055451
    Abstract: The invention relates to methods and systems for predicting or estimating the melting temperature of duplex nucleic acids, in the presence of divalent cations, particularly duplexes of oligonucleotides which may be used as, for example, but not limited to primers or probes in PCR and/or hybridization assays. The methods and algorithms use novel formulas, having terms and coefficients that are functions of the particular nucleotide sequence, to estimate the effect of divalent cation salt conditions on the melting temperature.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: November 8, 2011
    Assignee: Integrated DNA Technologies, Inc.
    Inventors: Richard Owczarzy, Bernardo Moreira, Yong You, Mark Aaron Behlke, Joseph Alan Walder
  • Publication number: 20110236898
    Abstract: A composition comprising an oligonucleotide having the structure 5?-Y1-L1-X-L2-Y2-3?. Y1 comprises a sequence of one or more DNA or RNA nucleotides, including a first nucleotide N1 having a 3? phosphate covalently linked to L1. Y2 comprises a sequence of one or more DNA or RNA nucleotides, including a second nucleotide N2 having a 5? phosphate covalently linked to L2. L1 and L2 each independently are a direct bond or a C1-C7 alkyl, alkynyl, alkenyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, substituted aryl, cycloalkyl, alkylaryl, or alkoxyl group. X is R1 is a hydrogen or a C1-C8 alkyl. M is a label or ligand comprising a fused polycyclic aromatic moiety.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Inventors: Scott Rose, Mark A. Behlke, Richard Owczarzy, Joseph A. Walder, Derek M. Thomas, Michael R. Marvin
  • Publication number: 20090198453
    Abstract: The invention relates to methods and systems for predicting or estimating the melting temperature of duplex nucleic acids, in the presence of divalent cations, particularly duplexes of oligonucleotides which may be used as, for example, but not limited to primers or probes in PCR and/or hybridization assays. The methods and algorithms use novel formulas, having terms and coefficients that are functions of the particular nucleotide sequence, to estimate the effect of divalent cation salt conditions on the melting temperature.
    Type: Application
    Filed: January 7, 2008
    Publication date: August 6, 2009
    Applicant: Integrated DNA Technologies, Inc
    Inventors: Richard Owczarzy, Bernardo Moreira, Yong You, Mark Aaron Behlke, Joseph Alan Walder
  • Patent number: 6889143
    Abstract: The invention relates to methods and systems for predicting or estimating the melting temperature of duplex nucleic acids, particularly duplexes of oligonucleotides which may be used, for example, as primers or probes in PCR and/or hybridization assays. The invention also relates to methods and systems for designing and selecting oligonucleotide probes and primers having a predicted melting temperature which is optimized for such assays. To this end, algorithms and methods are provided for predicting the melting temperature of a nucleic acid having a predetermined sequence. These methods and algorithms estimate the melting temperature of a nucleic acid duplex under particular salt conditions. The methods and algorithms use novel formulas, having terms and coefficients that are functions of the particular nucleotide sequence, to estimate the effect of particular salt conditions on the melting temperature.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: May 3, 2005
    Assignee: Intergrated DNA Technologies, Inc.
    Inventors: Mark Aaron Behlke, Lingyan Huang, Richard Owczarzy, Joseph Alan Walder
  • Publication number: 20040115705
    Abstract: The invention relates to methods and systems for predicting or estimating the melting temperature of duplex nucleic acids, particularly duplexes of oligonucleotides which may be used, for example, as primers or probes in PCR and/or hybridization assays. The invention also relates to methods and systems for designing and selecting oligonucleotide probes and primers having a predicted melting temperature which is optimized for such assays. To this end, algorithms and methods are provided for predicting the melting temperature of a nucleic acid having a predetermined sequence. These methods and algorithms estimate the melting temperature of a nucleic acid duplex under particular salt conditions. The methods and algorithms use novel formulas, having terms and coefficients that are functions of the particular nucleotide sequence, to estimate the effect of particular salt conditions on the melting temperature.
    Type: Application
    Filed: September 11, 2003
    Publication date: June 17, 2004
    Inventors: Mark Aaron Behlke, Lingyan Huang, Richard Owczarzy, Joseph Alan Walder