Patents by Inventor Richard P. Rava

Richard P. Rava has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160239604
    Abstract: Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions. In some embodiments, methods are provided for determining copy number variation (CNV) of fetuses using maternal samples comprising maternal and fetal cell free DNA. In some embodiments, methods are provided for determining CNVs known or suspected to be associated with a variety of medical conditions. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. Also disclosed are systems and computer program products for evaluation of CNV of sequences of interest.
    Type: Application
    Filed: October 21, 2014
    Publication date: August 18, 2016
    Inventors: Darya I. Chudova, Diana Abdueva, Richard P. Rava
  • Publication number: 20160232290
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 11, 2016
    Inventors: Richard P. Rava, Brian K. Rhees
  • Patent number: 9411937
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 9, 2016
    Assignee: Verinata Health, Inc.
    Inventors: Anupama Srinivasan, Richard P. Rava
  • Publication number: 20160210405
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: March 16, 2016
    Publication date: July 21, 2016
    Inventors: Richard P. Rava, Anupama Srinivasan
  • Publication number: 20160194703
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: December 29, 2015
    Publication date: July 7, 2016
    Inventors: Richard P. Rava, Brian K. Rhees
  • Patent number: 9323888
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 26, 2016
    Assignee: Verinata Health, Inc.
    Inventors: Richard P. Rava, Anupama Srinivasan
  • Publication number: 20160070853
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 10, 2016
    Applicant: Verinata Health, Inc.
    Inventors: Richard P. Rava, Anupama Srinivasan
  • Patent number: 9260745
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 16, 2016
    Assignee: Verinata Health, Inc.
    Inventors: Richard P. Rava, Brian K. Rhees
  • Publication number: 20160017412
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Application
    Filed: July 17, 2015
    Publication date: January 21, 2016
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Patent number: 9115401
    Abstract: Methods are disclosed for resolving measurement problems such problems in measuring chromosomal copy number. Some disclosed methods involve first selecting a primary assay element characteristic to partition. Such characteristic may be a source of experimental variability such as the GC content of measured DNA sequences. Additionally, the disclosed methods may employ an abundance or copy number function to transform the assay element frequencies into an abundance, dose, copy number score, or the like. In some cases, the disclosed methods estimate an amount of certain fetal DNA in a sample. The methods can further compare the estimated amount to a measured amount of fetal DNA in the sample. The comparison can be used to determine the fetal sex or aneuploidy.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 25, 2015
    Assignee: Verinata Health, Inc.
    Inventors: Richard P. Rava, Brian K. Rhees, John P. Burke
  • Publication number: 20150218631
    Abstract: Methods and kits for selectively enriching non-random polynucleotide sequences are provided. Methods and kits for generating libraries of sequences are provided. Methods of using selectively enriched non-random polynucleotide sequences for detection of fetal aneuploidy are provided.
    Type: Application
    Filed: April 2, 2015
    Publication date: August 6, 2015
    Inventors: Yue-Jen CHUU, Richard P. RAVA
  • Patent number: 8859196
    Abstract: The present invention provides an array of polymers and methods of forming arrays of polymers by providing a substrate having a first layer including one or more dielectric coatings on a solid support and a second layer including a plurality of polymers disposed on the first layer. The invention also provides methods for forming an array of polymers on a substrate using light-directed synthesis by providing a substrate having a first layer including one or more dielectric coatings on a solid support, derivatizing the first layer by contacting the first layer with a silanation reagent, and a second layer disposed on said first layer wherein the second layer includes functional groups protected with a photolabile protecting group.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 14, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Mark O. Trulson, Glenn H. McGall, Bei-Shen Sywe, Lisa T. Kajisa, Dana Truong, Richard P. Rava, Martin J. Goldberg
  • Publication number: 20140274740
    Abstract: The disclosure provides methods and kits for preparing sequencing library to detect chromosomal abnormality using cell-free DNA (cfDNA) without the need of first isolating the cfDNA from a liquid fraction of a test sample. In some embodiments, the method involves reducing the binding between the cfDNA and nucleosomal proteins without unwinding the cfDNA from the nucleosomal proteins. In some embodiments, the reduction of binding may be achieved by treating with a detergent or heating. In some embodiments, the method further involves freezing and thawing the test sample before reducing the binding between the cfDNA and the nucleosomal proteins. In some embodiments, the test sample is a peripheral blood sample from a pregnant woman including cfDNA of both a mother and a fetus, wherein the methods may be used to detect fetal chromosomal abnormality such as copy number variation.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Anupama Srinivasan, Richard P. Rava
  • Publication number: 20140199691
    Abstract: Methods and kits for selectively enriching non-random polynucleotide sequences are provided. Methods and kits for generating libraries of sequences are provided. Methods of using selectively enriched non-random polynucleotide sequences for detection of fetal aneuploidy are provided.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 17, 2014
    Applicant: Verinata Health, Inc.
    Inventors: Yue-Jen Chuu, Richard P. Rava
  • Publication number: 20140193818
    Abstract: Methods are disclosed for resolving measurement problems such problems in measuring chromosomal copy number. Some disclosed methods involve first selecting a primary assay element characteristic to partition. Such characteristic may be a source of experimental variability such as the GC content of measured DNA sequences. Additionally, the disclosed methods may employ an abundance or copy number function to transform the assay element frequencies into an abundance, dose, copy number score, or the like. In some cases, the disclosed methods estimate an amount of certain fetal DNA in a sample. The methods can further compare the estimated amount to a measured amount of fetal DNA in the sample. The comparison can be used to determine the fetal sex or aneuploidy.
    Type: Application
    Filed: February 21, 2014
    Publication date: July 10, 2014
    Inventors: Richard P. Rava, Brian K. Rhees, John P. Burke
  • Patent number: 8700341
    Abstract: Methods are disclosed for resolving measurement problems such problems in measuring chromosomal copy number. Some disclosed methods involve first selecting a primary assay element characteristic to partition. Such characteristic may be a source of experimental variability such as the GC content of measured DNA sequences. Additionally, the disclosed methods may employ an abundance or copy number function to transform the assay element frequencies into an abundance, dose, copy number score, or the like. In some cases, the disclosed methods estimate an amount of certain fetal DNA in a sample. The methods can further compare the estimated amount to a measured amount of fetal DNA in the sample. The comparison can be used to determine the fetal sex or aneuploidy.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 15, 2014
    Assignee: Verinata Health, Inc.
    Inventors: Richard P. Rava, Brian K. Rhees, John P. Burke
  • Publication number: 20140038830
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 6, 2014
    Applicant: Verinata Health, Inc.
    Inventors: Anupama Srinivasan, Richard P. Rava
  • Publication number: 20130324420
    Abstract: The present invention provides a method capable of detecting single or multiple fetal chromosomal aneuploidies in a maternal sample comprising fetal and maternal nucleic acids, and verifying that the correct determination has been made. The method is applicable to determining copy number variations (CNV) of any sequence of interest in samples comprising mixtures of genomic nucleic acids derived from two different genomes, and which are known or are suspected to differ in the amount of one or more sequence of interest. The method is applicable at least to the practice of noninvasive prenatal diagnostics, and to the diagnosis and monitoring of conditions associated with a difference in sequence representation in healthy versus diseased individuals.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Verinata Health, Inc.
    Inventor: Richard P. RAVA
  • Patent number: 8532936
    Abstract: The present invention provides a method capable of detecting single or multiple fetal chromosomal aneuploidies in a maternal sample comprising fetal and maternal nucleic acids, and verifying that the correct determination has been made. The method is applicable to determining copy number variations (CNV) of any sequence of interest in samples comprising mixtures of genomic nucleic acids derived from two different genomes, and which are known or are suspected to differ in the amount of one or more sequence of interest. The method is applicable at least to the practice of noninvasive prenatal diagnostics, and to the diagnosis and monitoring of conditions associated with a difference in sequence representation in healthy versus diseased individuals.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Verinata Health, Inc.
    Inventor: Richard P. Rava
  • Publication number: 20130096011
    Abstract: The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.
    Type: Application
    Filed: August 30, 2012
    Publication date: April 18, 2013
    Applicant: Verinata Health, Inc.
    Inventors: Richard P. Rava, Anupama Srinivasan