Patents by Inventor Richard Palicka

Richard Palicka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7803732
    Abstract: The present invention contemplates the addition of zirconium compounds to well known ceramic ballistic materials to increase resistance to penetration by projectiles. In the preferred embodiments of the present invention, the zirconium compound that is employed consists of ZrO2 and is provided in the range of about 0.1% to about 11%, by weight, of starting material before densification. Preferred ranges of proportion of ZrO2 in the finished ceramic material are in the ranges of about 0.30% to about 0.75%, by weight, or about 8-9%, by weight. The ballistic material using the combination of SiC with low volume of sintering aid and ZrO2 raises the theoretical density of the ceramic material to between 3.225 and 3.40 g/cc, which is slightly higher than the typical 3.22 g/cc theoretical density for hot pressed fully dense SiC.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: September 28, 2010
    Inventors: Daniel Ashkin, Richard Palicka
  • Publication number: 20100240517
    Abstract: The present invention contemplates the addition of zirconium compounds to well known ceramic ballistic materials to increase resistance to penetration by projectiles. In the preferred embodiments of the present invention, the zirconium compound that is employed consists of ZrO2 and is provided in the range of about 0.1% to about 11%, by weight, of starting material before densification. Preferred ranges of proportion of ZrO2 in the finished ceramic material are in the ranges of about 0.30% to about 0.75%, by weight, or about 8-9%, by weight. The ballistic material using the combination of SiC with low volume of sintering aid and ZrO2 raises the theoretical density of the ceramic material to between 3.225 and 3.40 g/cc, which is slightly higher than the typical 3.22 g/cc theoretical density for hot pressed fully dense SiC.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 23, 2010
    Inventors: Daniel Ashkin, Richard Palicka
  • Patent number: 7069836
    Abstract: A ceramic armor is disclosed in several embodiments. In a first embodiment, a metal base plate has a metal frame assembled on it having a central opening into which the ceramic material and stiffening plate are placed. A cover plate is placed over the frame to enclose the ceramic material on all sides. In a second embodiment, the frame has an open central area that has two crossing walls that define four sub-chambers. Four sets of ceramic material and stiffening plate are placed in the respective sub-chambers and a covering plate is placed over them. In a further embodiment, the frame has a plurality of cavities mechanically formed in it. A stiffening plate and a ceramic tile or plate are placed in each cavity and a cover plate is placed over the frame. The metal used to encapsulate the ceramic material may, if desired, comprise a Titanium alloy such as Ti-6Al-4V, and the ceramic material may comprise Silicon Carbide, Boron Carbide, Tungsten Carbide, Titanium Diboride, Aluminum Oxide or Aluminum Nitride.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: July 4, 2006
    Assignee: Cercom, Inc.
    Inventors: Richard Palicka, Daniel Ashkin
  • Publication number: 20060137517
    Abstract: A ceramic armor is disclosed in several embodiments. In a first embodiment, a metal base plate has a metal frame assembled on it having a central opening into which the ceramic material and stiffening plate are placed. A cover plate is placed over the frame to enclose the ceramic material on all sides. In a second embodiment, the frame has an open central area that has two crossing walls that define four sub-chambers. Four sets of ceramic material and stiffening plate are placed in the respective sub-chambers and a covering plate is placed over them. In a further embodiment, the frame has a plurality of cavities mechanically formed in it. A stiffening plate and a ceramic tile or plate are placed in each cavity and a cover plate is placed over the frame. The metal used to encapsulate the ceramic material may, if desired, comprise a Titanium alloy such as Ti-6Al-4V, and the ceramic material may comprise Silicon Carbide, Boron Carbide, Tungsten Carbide, Titanium Diboride, Aluminum Oxide or Aluminum Nitride.
    Type: Application
    Filed: February 3, 2004
    Publication date: June 29, 2006
    Inventors: Richard Palicka, Daniel Ashkin
  • Publication number: 20060105184
    Abstract: A ceramic armor is disclosed in several embodiments. In a first embodiment, a metal base plate has a metal frame assembled on it having a central opening into which the ceramic material is placed. A cover plate is placed over the frame to enclose the ceramic material on all sides. In a second embodiment, the frame has an open central area that has two crossing walls that define four sub-chambers. Four pieces of ceramic material are placed in the respective sub-chambers and a covering plate is placed over it. In a further embodiment, the frame has a plurality of cavities mechanically formed in it. A ceramic tile or plate is placed in each cavity and a cover plate is placed over the frame. The metal used to encapsulate the ceramic material may, if desired, comprise a Titanium alloy such as Ti-6Al-4V, and the ceramic material may comprise Silicon Carbide, Boron Carbide, Tungsten Carbide, Titanium Diboride or Aluminum Nitride.
    Type: Application
    Filed: November 26, 2003
    Publication date: May 18, 2006
    Inventors: Richard Palicka, Daniel Ashkin
  • Patent number: 6616767
    Abstract: The present invention provides techniques for coupling radio-frequency (RF) power to a metal plate in a ceramic pedestal. Perforations in the metal plate allow ceramic-to-ceramic bonding through the metal plate. The power from an RF power feed is distributed to the perforated metal plate via several electrodes that are spaced away from the centerline of the RF power feed, thus splitting power distribution. A ceramic bonding disk between the metal plate and the RF power feed provides mechanical support for the metal plate and a ceramic body to bond to through the perforations, thus reducing cracking of the metal plate and the surrounding ceramic material.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: September 9, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Talex Sajoto, Charles Dornfest, Harold Mortensen, Richard Palicka
  • Publication number: 20030051665
    Abstract: The present invention provides techniques for coupling radio-frequency (RF) power to a metal plate in a ceramic pedestal. Perforations in the metal plate allow ceramic-to-ceramic bonding through the metal plate. The power from an RF power feed is distributed to the perforated metal plate via several electrodes that are spaced away from the centerline of the RF power feed, thus splitting power distribution. A ceramic bonding disk between the metal plate and the RF power feed provides mechanical support for the metal plate and a ceramic body to bond to through the perforations, thus reducing cracking of the metal plate and the surrounding ceramic material.
    Type: Application
    Filed: March 27, 1998
    Publication date: March 20, 2003
    Inventors: JUN ZHAO, TALEX SAJOTO, CHARLES DORNFEST, HAROLD MORTENSEN, RICHARD PALICKA
  • Patent number: 5968379
    Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: October 19, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Charles Dornfest, Talex Sajoto, Leonid Selyutin, Stefan Wolff, Lee Luo, Harold Mortensen, Richard Palicka