Patents by Inventor Richard P. M. Houben

Richard P. M. Houben has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11771359
    Abstract: A system and method of identifying focal sources is presented. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals over time, each ECG signal detected via one of the sensors having a location in a heart and indicating electrical activity of the heart, each signal comprising at least an R wave and an S wave; creating an R-S map comprising an R-to-S ratio for each of the ECG signals, the R-to-S ratio comprising a ratio of absolute magnitude of the R wave to absolute magnitude of the S wave; identifying, for each of the ECG signals, local activation times (LATs); and correlating the R-to-S ratios for the ECG signals on the R-S map and the identified LATs and using the correlation to identify the focal sources.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: October 3, 2023
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Roy Urman, Meir Bar-Tal, Yaniv Ben Zrihem, Ziyad Zeidan, Gal Hayam, Stanislav Goldberg, Atul Verma, Yariv Avraham Amos, Richard P. M. Houben
  • Publication number: 20230013164
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Application
    Filed: September 12, 2022
    Publication date: January 19, 2023
    Inventors: RICHARD P. M. HOUBEN, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Publication number: 20220369991
    Abstract: Medical apparatus and methods for diagnostic and site determination of cardiac arrhythmias within a heart of a subject are provided. A computing device receives, records and processes electrocardiogram (ECG) signals in the form of bipolar and unipolar ECGs associated with respective cardiac tissue locations corresponding to catheter distal end sensors on locations. Unipolar ECGs that include signals from a plurality of successive heartbeats corresponding to locations within an area of study are analyzed to identify Fractionated Unipolar ECG Signal Complexes (FUESCs) of unipolar ECGs by defining complexes of the unipolar ECGs that correspond to respective bipolar activity windows. Identified arrhythmia sites for treatment include a predetermined number of unipolar ECGs that have a predetermined number of FUESCs. Atrial arrhythmia sites for treatment by ablation can be identified with respect to FUESCs of unipolar ECGs that include signals from at least ten successive heartbeats of an atrial tissue study area.
    Type: Application
    Filed: March 28, 2022
    Publication date: November 24, 2022
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Richard P.M. Houben, Lior Botzer, Meir Bar-Tal, Milad El Haddad, Frederick Geier Evans, Zachary P. Bubar
  • Patent number: 11439337
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 13, 2022
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Richard P. M. Houben, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Publication number: 20220192576
    Abstract: A medical system is provided. The medical system includes a processing device communicatively coupled to a probe. The processing device operates to cause the medical system receive physiological signals from electrodes of the probe and decompose the physiological signals into near-field component and far-field component by using mutual information from a set of the electrodes. The processing device operates to cause the medical system utilize the near-field components for localizing in time where a wave went under at least one of the plurality of electrodes.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 23, 2022
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Meir Bar-Tal, Richard P.M. Houben, Lior Botzer, Milad El Haddad
  • Patent number: 11229395
    Abstract: Catheterization of the heart is carried out by inserting a probe having electrodes into a heart of a living subject, recording a bipolar electrogram and a unipolar electrogram from one of the electrodes at a location in the heart, and defining a window of interest wherein a rate of change in a potential of the bipolar electrogram exceeds a predetermined value. An annotation is established in the unipolar electrogram, wherein the annotation denotes a maximum rate of change in a potential of the unipolar electrogram within the window of interest. A quality value is assigned to the annotation, and a 3-dimensional map is generated of a portion of the heart that includes the annotation and the quality value thereof.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 25, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Meir Bar-Tal, Richard P. M. Houben, Yaniv Ben Zriham, Assaf Pressman, Roy Urman, Shmuel Auerbach
  • Publication number: 20210228138
    Abstract: A system and method of identifying focal sources is presented. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals over time, each ECG signal detected via one of the sensors having a location in a heart and indicating electrical activity of the heart, each signal comprising at least an R wave and an S wave; creating an R-S map comprising an R-to-S ratio for each of the ECG signals, the R-to-S ratio comprising a ratio of absolute magnitude of the R wave to absolute magnitude of the S wave; identifying, for each of the ECG signals, local activation times (LATs); and correlating the R-to-S ratios for the ECG signals on the R-S map and the identified LATs and using the correlation to identify the focal sources.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 29, 2021
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Roy Urman, Meir Bar-Tal, Yaniv Ben Zrihem, Ziyad Zeidan, Gal Hayam, Stanislav Goldberg, Atul Verma, Yariv Avraham Amos, Richard P.M. Houben
  • Patent number: 11006887
    Abstract: A system and method of identifying focal sources is presented. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals over time, each ECG signal detected via one of the sensors having a location in a heart and indicating electrical activity of the heart, each signal comprising at least an R wave and an S wave; creating an R-S map comprising an R-to-S ratio for each of the ECG signals, the R-to-S ratio comprising a ratio of absolute magnitude of the R wave to absolute magnitude of the S wave; identifying, for each of the ECG signals, local activation times (LATs); and correlating the R-to-S ratios for the ECG signals on the R-S map and the identified LATs and using the correlation to identify the focal sources.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: May 18, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Roy Urman, Meir Bar-Tal, Yaniv Ben Zrihem, Ziyad Zeidan, Gal Hayam, Stanislav Goldberg, Atul Verma, Yariv Avraham Amos, Richard P. M. Houben
  • Publication number: 20200297234
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: RICHARD P. M. HOUBEN, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Patent number: 10674929
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 9, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Richard P. M. Houben, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Patent number: 10517496
    Abstract: A method of atrial focal source detection is provided which includes detecting, via sensors, electro-cardiogram (ECG) signals over time. Each ECG signal is detected via one of the sensors and indicates electrical activity of a heart. The method also includes determining, for each ECG signal, local activation times (LATs) each indicating a time of one of a plurality of atrial activations of a corresponding ECG signal and detecting whether one or more focal source areas of activation in the heart is indicated based on the detected ECG signals and the one or more local LATs. S-waves can be distinguished from non-S-waves by generating models for each atrial activation and classifying atrial activations. Maps can be generated by visually indicating, for each sensor, a level of incidence of the atrial activations occurring before atrial activations of neighboring sensors within a period of time.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: December 31, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Roy Urman, Ziyad Zeidan, Stanislav Goldberg, Gal Hayam, Meir Bar-Tal, Yaniv Ben Zrihem, Atul Verma, Yariv Avraham Amos, Richard P. M. Houben
  • Patent number: 10314542
    Abstract: A system and method of determining regions of interest for heart ablation using fractionation. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals, each ECG signal detected via one of the sensors and indicating electrical activity of a heart, determining, for each of the ECG signals, activation times (LATs) each indicating a time of activation of a corresponding ECG signal, generating, based on the determined LATs of each of the ECG signals, one or more driver maps and one or more perpetuator maps, each representing the electrical activity of the heart, deriving parameters from the driver and perpetuator maps, using at least fractionation, processing and combining the derived parameters into driver evidence and perpetuator evidence, and determining the regions of interest for heart ablation in accordance with the fractionation used to derive the driver evidence and the perpetuator evidence.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: June 11, 2019
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Meir Bar-Tal, Richard P. M. Houben, Yaniv Ben Zrihem, Stanislav Goldberg, Roy Urman
  • Publication number: 20190167137
    Abstract: Catheterization of the heart is carried out by inserting a probe having electrodes into a heart of a living subject, recording a bipolar electrogram and a unipolar electrogram from one of the electrodes at a location in the heart, and defining a window of interest wherein a rate of change in a potential of the bipolar electrogram exceeds a predetermined value. An annotation is established in the unipolar electrogram, wherein the annotation denotes a maximum rate of change in a potential of the unipolar electrogram within the window of interest. A quality value is assigned to the annotation, and a 3-dimensional map is generated of a portion of the heart that includes the annotation and the quality value thereof.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Meir Bar-Tal, Richard P.M. Houben, Yaniv Ben Zriham, Assaf Pressman, Roy Urman, Shmuel Auerbach
  • Patent number: 10238309
    Abstract: Catheterization of the heart is carried out by inserting a probe having electrodes into a heart of a living subject, recording a bipolar electrogram and a unipolar electrogram from one of the electrodes at a location in the heart, and defining a window of interest wherein a rate of change in a potential of the bipolar electrogram exceeds a predetermined value. An annotation is established in the unipolar electrogram, wherein the annotation denotes a maximum rate of change in a potential of the unipolar electrogram within the window of interest. A quality value is assigned to the annotation, and a 3-dimensional map is generated of a portion of the heart that includes the annotation and the quality value thereof.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 26, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Meir Bar-Tal, Richard P. M Houben, Yaniv Ben Zriham, Assaf Pressman, Roy Urman, Shmuel Auerbach
  • Publication number: 20190059766
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Application
    Filed: October 24, 2018
    Publication date: February 28, 2019
    Inventors: RICHARD P. M. HOUBEN, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Patent number: 10136828
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: November 27, 2018
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Richard P. M. Houben, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Publication number: 20170281031
    Abstract: Electroanatomic mapping is carried out by inserting a multi-electrode probe into a heart of a living subject, recording electrograms from the electrodes concurrently at respective locations in the heart, delimiting respective activation time intervals in the electrograms, generating a map of electrical propagation waves from the activation time intervals, maximizing coherence of the waves by adjusting local activation times within the activation time intervals of the electrograms, and reporting the adjusted local activation times.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: RICHARD P. M. HOUBEN, Meir Bar-Tal, Yaniv Ben Zriham, Roy Urman, Shmuel Auerbach
  • Publication number: 20170202471
    Abstract: A method of atrial focal source detection is provided which includes detecting, via sensors, electro-cardiogram (ECG) signals over time. Each ECG signal is detected via one of the sensors and indicates electrical activity of a heart. The method also includes determining, for each ECG signal, local activation times (LATs) each indicating a time of one of a plurality of atrial activations of a corresponding ECG signal and detecting whether one or more focal source areas of activation in the heart is indicated based on the detected ECG signals and the one or more local LATs. S-waves can be distinguished from non-S-waves by generating models for each atrial activation and classifying atrial activations. Maps can be generated by visually indicating, for each sensor, a level of incidence of the atrial activations occurring before atrial activations of neighboring sensors within a period of time.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 20, 2017
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Roy Urman, Ziyad Zeidan, Stanislav Goldberg, Gal Hayam, Meir Bar-Tal, Yaniv Ben Zrihem, Atul Verma, Yariv Avraham Amos, Richard P.M Houben
  • Publication number: 20170202470
    Abstract: A system and method of identifying focal sources is presented. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals over time, each ECG signal detected via one of the sensors having a location in a heart and indicating electrical activity of the heart, each signal comprising at least an R wave and an S wave; creating an R-S map comprising an R-to-S ratio for each of the ECG signals, the R-to-S ratio comprising a ratio of absolute magnitude of the R wave to absolute magnitude of the S wave; identifying, for each of the ECG signals, local activation times (LATs); and correlating the R-to-S ratios for the ECG signals on the R-S map and the identified LATs and using the correlation to identify the focal sources.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 20, 2017
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Roy Urman, Meir Bar-Tal, Yaniv Ben Zrihem, Ziyad Zeidan, Gal Hayam, Stanislav Goldberg, Atul Verma, Yariv Avraham Amos, Richard P.M. Houben
  • Publication number: 20170202516
    Abstract: A system and method of determining regions of interest for heart ablation using fractionation. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals, each ECG signal detected via one of the sensors and indicating electrical activity of a heart, determining, for each of the ECG signals, activation times (LATs) each indicating a time of activation of a corresponding ECG signal, generating, based on the determined LATs of each of the ECG signals, one or more driver maps and one or more perpetuator maps, each representing the electrical activity of the heart, deriving parameters from the driver and perpetuator maps, using at least fractionation, processing and combining the derived parameters into driver evidence and perpetuator evidence, and determining the regions of interest for heart ablation in accordance with the fractionation used to derive the driver evidence and the perpetuator evidence.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 20, 2017
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Meir Bar-Tal, Richard P.M. Houben, Yaniv Ben Zrihem, Stanislav Goldberg, Roy Urman