Patents by Inventor Richard POMALIS

Richard POMALIS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200001232
    Abstract: A system for carbon dioxide removal from product from a direct contact steam generation system is provided. The system comprises a direct contact steam generation system, a pressurized heat recovery system, and a CO2 separation system, wherein the direct contact steam generation system converts a gaseous, liquid or solid fuel, in the presence of oxygen, using a moderate water, to produce a mixed vapour stream to be then led into the pressurized heat recovery system to produce a partially condensed product, which is led into the CO2 separation system to reduce the CO2 content to produce a CO2-lean liquid product, and the pressurized heat recovery system utilizes latent heat of the mixed vapour stream to produce a lower pressure vapour stream from the CO2-lean liquid product exiting the CO2 separation system.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Mohammad Asiri, Ted Herage, Bruce Clements, Richard Pomalis, Lijun Wu, Johnny Matta, Steven Chen
  • Patent number: 9702270
    Abstract: A system using hybrid Rankine cycles is provided. The system includes a first Rankine cycle system using a first working fluid, the first system producing exergy loss and residual energy from at least one of turbine extraction, turbine condensation and boiler flue gas; and a second Rankine cycle system using a second working fluid to recover the exergy loss and residual energy. The second working fluid comprises a first stream and a second stream, wherein the first stream exchanges heat with the first system via at least one first heat exchanger, and the second stream exchanges heat with the first system via the at least one first heat exchanger and at least one second heat exchanger. A turbine of the first system is configured to allow the first working fluid to exit at a sufficiently high pressure and temperature to provide heat to the second system instead of expanding to a low pressure and temperature and discharging heat to ambient using a condenser.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: July 11, 2017
    Assignee: HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF NATURAL RESOURCES
    Inventors: Bruce R. Clements, Lijun Wu, Richard Pomalis, Ligang Zheng
  • Patent number: 9448009
    Abstract: A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 20, 2016
    Assignee: HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF NATURAL RESOURCES
    Inventors: Bruce Clements, Richard Pomalis
  • Publication number: 20150267567
    Abstract: A system using hybrid Rankine cycles is provided. The system includes a first Rankine cycle system using a first working fluid, the first system producing exergy loss and residual energy from at least one of turbine extraction, turbine condensation and boiler flue gas; and a second Rankine cycle system using a second working fluid to recover the exergy loss and residual energy. The second working fluid comprises a first stream and a second stream, wherein the first stream exchanges heat with the first system via at least one first heat exchanger, and the second stream exchanges heat with the first system via the at least one first heat exchanger and at least one second heat exchanger. A turbine of the first system is configured to allow the first working fluid to exit at a sufficiently high pressure and temperature to provide heat to the second system instead of expanding to a low pressure and temperature and discharging heat to ambient using a condenser.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 24, 2015
    Inventors: Bruce R. Clements, Lijun Wu, Richard Pomalis, Ligang Zheng
  • Publication number: 20150219396
    Abstract: A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
    Type: Application
    Filed: March 18, 2015
    Publication date: August 6, 2015
    Inventors: Bruce Clements, Richard Pomalis
  • Patent number: 9033704
    Abstract: A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 19, 2015
    Assignee: Her Majesty The Queen in Right of Canada as Represented by the Minister of Natural Resources
    Inventors: Bruce Clements, Richard Pomalis
  • Publication number: 20150040807
    Abstract: A conversion burner, a system of conversion burners, and a method of conversion of a solid fuel selected from at least one of biomass and peat. The burner is constructed and arranged to be affixed to a combustor, and comprises a housing defining a burner chamber; a grate within the burner chamber defining an upper chamber region and a lower chamber region; at least a first solid fuel inlet; at least a first air inlet operatively connected to the upper chamber region and connectable to a first air source; a product gas outlet operatively connected to the combustion region of the combustor; and at least one waste outlet. The product gas is delivered to the combustor for firing or co-firing, overcoming fouling problems which result from direct delivery of solid fuel to the combustor, and problems raised by remote conversion or storage of solid fuel.
    Type: Application
    Filed: March 29, 2012
    Publication date: February 12, 2015
    Inventors: Bruce Clements, Ted Herage, Richard Pomalis
  • Publication number: 20120237882
    Abstract: A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
    Type: Application
    Filed: December 10, 2010
    Publication date: September 20, 2012
    Applicant: Her Majesty The Queen in Right of Canada as Represented by the Minister of Natural Resources
    Inventors: Bruce Clements, Richard Pomalis
  • Publication number: 20110143291
    Abstract: A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 16, 2011
    Inventors: Bruce CLEMENTS, Richard POMALIS