Patents by Inventor Richard Remo Fontana

Richard Remo Fontana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210283688
    Abstract: Techniques and compositions are disclosed for three-dimensional printing with powder/binder systems including, but not limited to, metal injection molding powder materials, highly-filled polymer composites, and any other materials suitable for handling with various additive manufacturing techniques, and further suitable for subsequent debinding and thermal processing into a final object.
    Type: Application
    Filed: December 14, 2017
    Publication date: September 16, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Ricardo Fulop, Animesh Bose, Michael Andrew Gibson, Richard Remo Fontana, Jonah Samuel Myerberg
  • Publication number: 20210276083
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving strength fabrication of three-dimensional objects formed through layer-by-layer process in which an ink is delivery of a binder delivered onto successive layers of a powder of inorganic particles in a powder bed. More specifically, nanoparticles of inorganic material can may be introduced into one or more layers of the metal powder in the powder bed and thermally processed to facilitate sinter necking, in the powder bed, of the metal particles forming the three-dimensional object. Such sinter necking in the powder bed can may improve strength of the three-dimensional objects being fabricated and, also or instead, can may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects (e.g., slumping and shrinking in a final sintering stage and/or inadequate densification of the final part).
    Type: Application
    Filed: February 21, 2018
    Publication date: September 9, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson
  • Publication number: 20210237347
    Abstract: Systems, methods, components, and materials are disclosed for stereolithographic fabrication of three-dimensional, dense objects. A resin including at least one component of a binder system and dispersed particles can be exposed to an activation light source. The activation light source can cure the at least one component of the binder system to form a green object, which can include the at least one component of the binder system and the particles. A dense object can be formed from the green object by removing the at least one component of the binder system in an extraction process and thermally processing particles to coalesce into the dense object.
    Type: Application
    Filed: November 14, 2017
    Publication date: August 5, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Alexander C. Barbati, Richard Remo Fontana, Michael Andrew Gibson, George Hudelson
  • Publication number: 20210108856
    Abstract: A sintering furnace may include a furnace chamber and a retort located within the furnace chamber that receives a part to be heated. The furnace may also include one or more heating elements positioned around the retort and a power controller including power modules connected in series. The power modules may be operably connected to the one or more heating elements and may provide a direct current (DC) power output. A controller may selectively control the power modules to supply power to the one or more heating elements.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Richard Remo Fontana, Leon Fay
  • Publication number: 20210008617
    Abstract: A method is provided for printing a three-dimensional object. The method comprises, depositing a layer of metal powder onto a powder bed of a three-dimensional printer. A liquid is heated to generate a vapor. The liquid is removed from the vapor to dry the vapor by heating the vapor above a condensation temperature of the liquid. The dry vapor is deposited onto the powder bed of the three-dimensional printer.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Applicant: Desktop Metal, Inc.
    Inventors: Emanuel M. SACHS, Paul A. HOISINGTON, Richard Remo FONTANA, Jamison GO, Joseph JOHNSON, George HUDELSON, Cassia LOCKWOOD, Michael GOLDBLATT
  • Publication number: 20200376547
    Abstract: A furnace system for printing an object using additive manufacturing. The furnace system may include a furnace chamber; an outlet fluidly coupled to the furnace chamber for removal of an exhaust gas from the furnace chamber; a conduit fluidly coupled to the outlet; an oxygen injector fluidly coupled to the conduit; an isolation system fluidly coupled to the conduit between the furnace chamber and the oxygen injector; and a catalyst enclosure comprising an oxidizing catalyst.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Applicant: Desktop Metal, Inc.
    Inventors: Aaron SILIDKER, Richard Remo FONTANA, Brian KERNAN, Mark SOWERBUTTS, Tomek BRZEZINSKI, Ricardo FULOP, Leon FAY, Daniel R. JEPEAL, Nathan WOODARD
  • Patent number: 10751799
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. An electric current delivered to produce the magnetohydrodynamic forces can be controlled between a pulsed electric current and a direct electric current to change the rate of liquid metal ejection from a nozzle. For example, the electric current can be switched between a pulsed electric current and a direct electric current based at least in part on a position of the nozzle along the controlled pattern, providing accuracy of liquid metal deposition along portions of the pattern having more detail and providing speed of liquid metal deposition along portions of the pattern having less detail.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: August 25, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Richard Remo Fontana
  • Patent number: 10639717
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Porosity of one or more predetermined portions of objects fabricated from an accumulation of liquid metal droplets ejected using magnetohydrodynamic force can be controlled to form interfaces between support structures and parts within the object. Higher porosity along the interfaces, as compared to porosity along the support structures and the parts, can be useful for facilitating separation of the parts from the support structures.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 5, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Richard Remo Fontana, Michael Andrew Gibson
  • Patent number: 10603718
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal from a nozzle along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. A feeder system can provide a continuous or substantially continuous supply of a solid metal to the nozzle to facilitate a correspondingly continuous or substantially continuous process for ejecting liquid metal as part of a commercially viable manufacturing process.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 31, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Mark Gardner Gibson, Richard Remo Fontana
  • Patent number: 10589467
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: March 17, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Patent number: 10543532
    Abstract: Devices, systems, and methods are directed to applying magnetohydrodynamic forces to liquid metal to eject liquid metal along a controlled pattern, such as a controlled three-dimensional pattern as part of additive manufacturing of an object. Magnets used to form the magnetohydrodynamic forces are thermally managed to facilitate directing strong magnetic fields into liquid metals at high temperatures. Such strong magnetic fields can be useful for imparting, under otherwise equivalent conditions, higher magnetohydrodynamic forces to liquid metal being ejected from a nozzle to form an object.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: January 28, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Emanuel Michael Sachs, Mark Gardner Gibson, Richard Remo Fontana
  • Publication number: 20190329502
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Publication number: 20190329500
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Publication number: 20190329501
    Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
  • Patent number: 10456833
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 29, 2019
    Assignee: Desktop Metals, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20190322046
    Abstract: A system and corresponding method to move build material in a three-dimensional (3D) printing system uses a gripper. The gripper is arranged to apply at least two opposing lateral forces to the build material. The at least two opposing lateral forces are applied to the build material, in conjunction with linear motion of the gripper, for at least a portion of a path the build material travels toward an extrusion head.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Richard Burnham, John LaPlante, Aaron Preston, Richard Remo Fontana
  • Patent number: 10384396
    Abstract: A system and corresponding method to move build material in a three-dimensional (3D) printing system uses a gripper. The gripper is arranged to apply at least two opposing lateral forces to the build material. The at least two opposing lateral forces are applied to the build material, in conjunction with linear motion of the gripper, for at least a portion of a path the build material travels toward an extrusion head.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 20, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Richard Burnham, John LaPlante, Aaron Preston, Richard Remo Fontana
  • Publication number: 20190240730
    Abstract: A three-dimensional printer includes a vessel containing a liquid in which a printed object can debind during fabrication. More generally, the vessel may contain any liquid medium selected to control or modify properties of a printed object during fabrication. For example, the liquid may also or instead impose a controlled thermal environment for the printed object, apply finishing materials to an exterior surface of the object, provide a component or catalyst for a reaction, or otherwise treat the printed object or control ambient conditions during printing.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Inventors: Charles John Haider, Michael Andrew Gibson, Richard Remo Fontana, Alexander C. Barbati
  • Patent number: 10350682
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Interface layers suitable for manufacture with an additive manufacturing system may resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: July 16, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20190160529
    Abstract: A materials processing furnace provides for debinding and sintering objects and treating effluent generated by the sintering. A heating chamber maintains a controlled atmosphere for sintering the object. A vacuum pump evacuates an effluent from the heating chamber, and an injector adds a reagent to the evacuated effluent to form a mixed gas. A catalytic converter receives the mixed gas and catalyzes one or more hazardous or offensive compounds of the effluent, thereby converting the effluent to a safer and less offensive exhaust. As a result, the furnace is suitable for operation in an office environment.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventors: Aaron Silidker, Richard Remo Fontana, Brian Kernan, Mark Sowerbutts, Tomek Brzezinski, Ricardo Fulop, Leon Fay, Daniel R. Jepeal