Patents by Inventor Richard Rudow

Richard Rudow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150289097
    Abstract: Pseudorange information is extracted by a cellular device from a Global Navigation Satellite System (GNSS) chipset of the cellular device. The cellular device accesses the GNSS chipset embedded within the cellular device where the GNSS chipset calculates pseudorange information for use by the GNSS chipset. The cellular device extracts the pseudorange information from the GNSS chipset for use elsewhere in the cellular device outside of the GNSS chipset.
    Type: Application
    Filed: September 24, 2013
    Publication date: October 8, 2015
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, James M. Janky
  • Publication number: 20150057028
    Abstract: External accessory data is collected at a mobile data collection platform provided by an external accessory of the mobile data collection platform. An image that includes a point of interest is captured by an image capturing device that is an integral part of the mobile data collection platform performs. Raw observables are obtained from an external GNSS raw observable provider that is separate from and outside of the mobile data collection platform. A position fix of the mobile data collection platform is determined based on the raw observable. Orientation information comprising a tilt angle and an azimuth angle is determined. External accessory data is received from an accessory that is external to the mobile data collection platform. The image, the position fix, the orientation information and the external accessory data are stored in hardware memory of the mobile data collection platform.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 26, 2015
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker
  • Publication number: 20150050907
    Abstract: External accessory data is collected at a mobile data collection platform (MDCP) provided by an external accessory of the MDCP. An image that includes a point of interest is captured using an image capturing device integral to the MDCP. Raw observables are obtained from a GNSS chipset internal to the MDCP. An position fix of the MDCP defines the location of an antenna and is determined based on the raw observables. An entrance pupil location is calculated as an offset off the antenna location. Orientation information comprising a tilt angle and an azimuth angle is determined. The position fix and orientation information are associated with a three dimensional location that the MDCP is at when the image was captured. External accessory data is received from an accessory external to the MDCP. The image, position fix, orientation information and external accessory data are stored in hardware memory of the MDCP.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 19, 2015
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker
  • Publication number: 20150045059
    Abstract: An image that includes a point of interest is captured using an image capturing device that is an integral part of the mobile data collection platform. Raw observables are obtained from a GNSS raw observables provider that is external to and coupled with the mobile data collection platform. A position fix of the mobile data collection platform is determined based on the raw observables where the position fix is a location of an antenna. A location of an entrance pupil is calculated as an offset from the location of the antenna. Orientation information comprising a tilt angle and an azimuth angle is determined. The position fix and the orientation information are associated with a three dimensional location of the mobile data collection platform when the image was captured. Scale information is captured. The image, the position fix, the scale information, and the orientation information are stored in hardware memory of the mobile data collection platform.
    Type: Application
    Filed: October 15, 2014
    Publication date: February 12, 2015
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker
  • Publication number: 20150045058
    Abstract: An image that includes a point of interest is captured using an image capturing device that is part of the mobile data collection platform. Raw observables are obtained from a GNSS chipset that is internal to the mobile data collection platform. A position fix of the mobile data collection platform is determined based on the raw observables where the position fix defines a location of an antenna. A location of an entrance pupil is calculated as an offset of the location of the antenna. Orientation information comprising a tilt angle and an azimuth angle is determined. The position fix and the orientation information are associated with a three dimensional location that the mobile data collection platform is at when the image was captured. Scale information is captured. The image, the position fix, the scale information, and the orientation information are stored in hardware memory of the mobile data collection platform.
    Type: Application
    Filed: October 15, 2014
    Publication date: February 12, 2015
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker
  • Publication number: 20150043012
    Abstract: A known fixed relationship is maintained between an external electronic distance measurement accessory and a mobile data collection platform that are physically coupled together. A light beam axis of the external electronic distance measurement accessory is parallel with an optical axis of an entrance pupil of the mobile data collection platform. The external electronic distance measurement accessory integrates with the mobile data collection platform. The external electronic distance measurement accessory receives control instructions from the mobile data collection platform.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 12, 2015
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky, Michael V. McCusker
  • Publication number: 20150009067
    Abstract: A method for contextual inference of user activity is disclosed. In one embodiment, an indication of the motion of a pole mounted sensing device comprising at least one motion sensor and a Global Navigation Satellite System (GNSS) receiver configured to at least generate raw GNSS observables is received from the at least one motion sensor. The indication of the motion of the pole mounted sensing device is correlated with an operation defined in a gesture library regarding GNSS data collect by the GNSS receiver at a time when the indication of the motion is detected. The indication and the GNSS data are stored.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventors: Richard Rudow, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20140375493
    Abstract: A method of improving position determination of a device using locally measured movement. A first position fix of a Global Navigation Satellite System (GNSS) receiver system of a device is accessed. A second position fix of the GNSS receiver system is accessed at a time subsequent to the first position fix. Locally measured device movement information is obtained from at least one sensor, that is in a known physical relationship to the device, for a time period after the first position fix and no later than the second position fix, wherein the at least one sensor comprises an image capture device. The quality of measurement of the second position fix is improved by disciplining the second position fix based on the locally measured device movement information.
    Type: Application
    Filed: May 2, 2014
    Publication date: December 25, 2014
    Inventors: Shawn D. Weisenburger, Richard Rudow, Nicholas C. Talbot, Peter Van Wyck Loomis, James M. Janky
  • Publication number: 20140378171
    Abstract: A first process and a second process are executed concurrently by one or more hardware processors located in the cellular device and outside of a Global Navigation Satellite System (GNSS) chipset embedded in the cellular device. The first process determines a first set of one or more position fixes based on extracted raw pseudorange information. The second process determines carrier phase smoothed pseudoranges based on carrier phase information and determines a second set of one or more position fixes based on the carrier phase smoothed pseudoranges. One or more of the first set of position fixes are provided to a user while a predetermined amount of carrier phase information is not available for performing carrier phase smoothing. One or more of the second set of position fixes are provided to the user while a predetermined amount of carrier phase information is available for performing carrier phase smoothing.
    Type: Application
    Filed: May 2, 2014
    Publication date: December 25, 2014
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20140378170
    Abstract: A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is calculated based on the raw pseudoranges. At a first point in time, a first image, and at a second point in time, a second image are obtained with an image capturing device that is in a known physical relationship with the cellular device. An estimate of a distance that the cellular device moved from the first point in time to the second point in time is calculated by processing image data collected from the first point in time to the second point in time. The position fix is processed based on the estimate of the distance.
    Type: Application
    Filed: May 2, 2014
    Publication date: December 25, 2014
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20140253375
    Abstract: A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is determined based on the raw pseudoranges. Locally measured cellular device movement information is obtained from at least one sensor that is in a known physical relationship with the cellular device. The locally measured cellular device movement information is applied to the position fix.
    Type: Application
    Filed: May 2, 2014
    Publication date: September 11, 2014
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20140240170
    Abstract: A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw observables that include raw pseudoranges and carrier phase information. The raw observables are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. Smoothed pseudoranges are provided by smoothing the raw pseudoranges based on the carrier phase information. The accessing, the extracting and the providing are performed by one or more hardware processors located in the cellular device and outside of the GNSS chipset.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Inventors: Richard Rudow, Robert Wold, Venkateswaran Kasirajan, Nicholas C. Talbot, Peter Van Wyck Loomis, Shawn D. Weisenburger, James M. Janky
  • Publication number: 20140187193
    Abstract: The cellular device accesses a GPS/GNSS chipset embedded within the cellular device. The GPS/GNSS chipset calculates pseudorange information for use by the GPS/GNSS chipset. The cellular device extracts the pseudorange information from the GPS/GNSS chipset for use elsewhere in the cellular device outside of the GPS/GNSS chipset.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Inventors: Richard Rudow, Venkateswaran Kasirajan, Robert Wold, James M. Janky
  • Publication number: 20140184442
    Abstract: A method of extracting pseudorange information using a cellular device. A Global Navigation Satellite System (GNSS) chipset which is physically remote from a cellular device is accessed which provides raw GNSS observables information based upon signals received from a circularly polarized GNSS antenna. The raw GNSS observables information is wirelessly transmitted from the GNSS chipset to the cellular device. The raw GNSS observables information is extracted by a processor of the cellular device. The raw GNSS observables information, in addition to GNSS corrections from at least one correction source, is used by the processor to determine a position of the circularly polarized GNSS antenna.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Inventors: Peter Large, Richard Rudow, Robert Wold, Venkateswaran Kasirajan, James M. Janky
  • Patent number: 8560237
    Abstract: Systems, methods, and devices for performing a trip management function are disclosed. A client computer accesses a server networked therewith to retrieve and store data, such as Web documents, relating to the trip. A wireless device interface allows a portable device, wirelessly coupled with a cellular telephone system with the network, to download the Web document. The portable device has cellular telephone functionality, geo-locating functionality, such as GPS capability, for determining its geo-location, and a processor for processing the Web document to help manage the trip. The Web document can include a set of map tiles, which encompass a particular geo-location area, and which form a dynamic map display. As the geo-location of the device changes, the next sequential map tile is downloaded and processed for displayed thereon.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 15, 2013
    Assignee: Trimble Navigation Limited
    Inventors: Richard Rudow, James M. Janky, Robert Joseph Allen, Craig Howard
  • Publication number: 20090070033
    Abstract: A Web based application system for managing a trip. The Web based application system for managing a trip includes a graphical user interface for allowing a client computer coupled to a network to access a server computer to retrieve and store data relating to the trip therewith, one or more interactive windows functioning with the graphical user interface to perform the retrieving and the storing such that the data include a Web document and the graphical user interface and the interactive windows include a first application, and a wireless device interface for allowing a portable device wirelessly coupled, with a cellular telephone system, with the network to access the Web document. The portable device includes a cellular telephone functionality, a geo-locating functionality and a processor for processing the Web document. The processing helps manage the trip. Downloading and processing the Web document include a second application.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 12, 2009
    Inventors: Richard Rudow, James M. Janky, Robert Joseph Allen, Craig Howard
  • Publication number: 20090070032
    Abstract: A network based computerized system for managing a trip. The network based computerized system includes a network, which includes one or more of the Internet and a wide area network. The network based computerized system includes a server coupled to the network running a network based application for allowing a user of a client computer coupled with the network to store, on the server, data relating to the trip. The network based computerized system includes a cellular telephone system coupled to the network for allowing a user of a portable electronic device disposed for wirelessly communicating with the cellular telephone system to access the server and download the data relating to the trip. The portable electronic device performs a geo-locating function for determining a geographic location of the portable electronic device and accesses a signal relating to the geographic location generated by a system for determining the geographic location.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 12, 2009
    Inventors: Richard Rudow, James M. Janky, Robert Joseph Allen, Craig Howard
  • Publication number: 20090043505
    Abstract: Systems, methods, and devices for performing a trip management function are disclosed. A client computer accesses a server networked therewith to retrieve and store data, such as Web documents, relating to the trip. A wireless device interface allows a portable device, wirelessly coupled with a cellular telephone system with the network, to download the Web document. The portable device has cellular telephone functionality, geo-locating functionality, such as GPS capability, for determining its geo-location, and a processor for processing the Web document to help manage the trip. The Web document can include a set of map tiles, which encompass a particular geo-location area, and which form a dynamic map display. As the geo-location of the device changes, the next sequential map tile is downloaded and processed for displayed thereon.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 12, 2009
    Inventors: Richard Rudow, James M. Janky, Robert Joseph Allen, Craig Howard
  • Publication number: 20060142913
    Abstract: A vehicle fleet management information system identifies location and direction of movement of each vehicle in a fleet in real-time, and automatically reports such information, as well as status of predetermined events in which the vehicle is engaged, directly to the fleet manager. Each fleet vehicle has an assigned time slot to transmit its reporting information over a communications network without interfering with transmissions from other vehicles in their own respective time slots. A timing control phase lock loop (PLL) provides precise time synchronization for timing corrections from a global positioning system (GPS) based time reference. A dual band full-duplex interface of the network has TDMA on one-half and broadcast on the other half. Microprocessor time processing units in components of the network perform precise clock synchronization. Space diversity performed on received vehicle transmitted messages avoids data corruption.
    Type: Application
    Filed: May 10, 2005
    Publication date: June 29, 2006
    Inventors: John Coffee, Richard Rudow, Robert Allen, Mark Billings, David Dye, Mark Kirchner, Robert Lewis, Kevin Marvin, Robert Sleeper, William Tekniepe
  • Publication number: 20060089793
    Abstract: Systems, methods, and devices for performing a trip management function are disclosed. A client computer accesses a server networked therewith to retrieve and store data, such as Web documents, relating to the trip. A wireless device interface allows a portable device, wirelessly coupled with a cellular telephone system with the network, to download the Web document. The portable device has cellular telephone functionality, geo-locating functionality, such as GPS capability, for determining its geo-location, and a processor for processing the Web document to help manage the trip. The Web document can include a set of map tiles, which encompass a particular geo-location area, and which form a dynamic map display. As the geo-location of the device changes, the next sequential map tile is downloaded and processed for displayed thereon.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventors: Richard Rudow, James Janky, Robert Allen, Craig Howard