Patents by Inventor Richard S. Wagman

Richard S. Wagman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7090407
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: August 15, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Patent number: 7090406
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: August 15, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Patent number: 6937801
    Abstract: A fiber optic cable is provided that includes a plurality of lengthwise extending, non-jacketed bundles of optical fibers and a cable jacket surrounding the bundles of optical fibers. Each bundle of optical fibers may include a binder, such as a binder thread, for maintaining the integrity of the bundle. The binder may include, for example, a binder thread formed of an air entangled, textured, continuous multi-filament thread. The fiber optic cable may also include a separation element for preventing adhesion between the bundles of optical fibers and the cable jacket without having to separately jacket each bundle of optical fibers.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: August 30, 2005
    Assignee: Corning Cable Systems LLC
    Inventors: Warren W. McAlpine, William C. Hurley, Richard S. Wagman, James L. Baucom, Scott A. McDowell
  • Publication number: 20040228589
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Application
    Filed: January 27, 2004
    Publication date: November 18, 2004
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Publication number: 20040223720
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Application
    Filed: January 27, 2004
    Publication date: November 11, 2004
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Publication number: 20040223699
    Abstract: A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of a optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
    Type: Application
    Filed: January 27, 2004
    Publication date: November 11, 2004
    Inventors: Stuart R. Melton, Hieu V. Tran, David A. Thompson, Richard S. Wagman, Michael J. Gimblet, Xin Liu
  • Patent number: 6813421
    Abstract: A fiber optic cable including a cable core having at least one optical fiber and a ripcord. In one embodiment, the ripcord is a conductive material operative, upon application of a sufficient pulling force, to rip at least one cable component for facilitating access to said at least one optical fiber. In other embodiments, the ripcord is formed from a semi-conductive material, the ripcord is removably attached to at least one cable component, and/or the ripcord has an excess length.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: November 2, 2004
    Assignee: Corning Cable Systems LLC
    Inventors: Jason C. Lail, Jody L. Greenwood, Patrick K. Strong, Roger K. Peterson, Bradley J. Blazer, William E. Caldwell, Richard S. Wagman, Douglas S. Hedrick
  • Patent number: 6807347
    Abstract: A fiber optic cable is provided that includes a plurality of lengthwise extending, non-jacketed bundles of optical fibers and a cable jacket surrounding the bundles of optical fibers. Each bundle of optical fibers may include a binder, such as a binder thread, for maintaining the integrity of the bundle. The binder may include, for example, a binder thread formed of an air entangled, textured, continuous multi-filament thread. The fiber optic cable may also include a separation element for preventing adhesion between the bundles of optical fibers and the cable jacket without having to separately jacket each bundle of optical fibers.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: October 19, 2004
    Assignee: Corning Cable Systems LLC
    Inventors: Warren W. McAlpine, Richard S. Wagman, William C. Hurley, James L. Baucom, Scott A. McDowell
  • Patent number: 6785450
    Abstract: A self-supporting fiber optic cable includes a messenger section having at least one strength and anti-buckling member enclosed within a jacket and a carrier section enclosed within a jacket that is joined to the jacket of the messenger section by a web. In a preferred embodiment of the present invention, carrier section does not include strength members and the optical fibers are set with a high EFL. The greater EFL accommodates elongation of carrier section without transmission of stress to optical fibers. In addition, the preferably generally cylindrical internal surface of a tube or jacket curves the optical fibers creating EFL, for example, the fibers are guided by the internal surface in a helical path. Resistance to carrier section elongation and contraction can be controlled by varying the length of the web connecting the carrier and messenger sections.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: August 31, 2004
    Assignee: Corning Cable Systems LLC
    Inventors: Richard S. Wagman, Larry W Field, Michael J. Ott
  • Publication number: 20030165311
    Abstract: A self-supporting fiber optic cable includes a messenger section having at least one strength and anti-buckling member enclosed within a jacket and a carrier section enclosed within a jacket that is joined to the jacket of the messenger section by a web. In a preferred embodiment of the present invention, carrier section does not include strength members and the optical fibers are set with a high EFL. The greater EFL accommodates elongation of carrier section without transmission of stress to optical fibers. In addition, the preferably generally cylindrical internal surface of a tube or jacket curves the optical fibers creating EFL, for example, the fibers are guided by the internal surface in a helical path. Resistance to carrier section elongation and contraction can be controlled by varying the length of the web connecting the carrier and messenger sections.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 4, 2003
    Inventors: Richard S. Wagman, Larry W. Field, Michael J. Ott
  • Patent number: 6606436
    Abstract: A fiber optic cable having strength assemblies (30) adjacent a tube having at least one optical fiber therein, at least one of the strength assemblies including a strength member for imparting crush resistance to the cable. The strength member is generally coupled to a first jacket, and may be surrounded by a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. The arrangement of the cable components and strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distributes the stress for preventing crush induced attenuation in the optical fibers.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: August 12, 2003
    Assignee: Corning Cable Systems LLC
    Inventors: Eric R. Logan, Richard S. Wagman, Jason C. Lail, Michael J. Gimblet
  • Publication number: 20030118295
    Abstract: A fiber optic cable including a cable core having at least one optical fiber and a ripcord. In one embodiment, the ripcord is a conductive material operative, upon application of a sufficient pulling force, to rip at least one cable component for facilitating access to said at least one optical fiber. In other embodiments, the ripcord is formed from a semi-conductive material, the ripcord is removably attached to at least one cable component, and/or the ripcord has an excess length.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Inventors: Jason C. Lail, Jody L. Greenwood, Patrick K. Strong, Roger K. Peterson, Bradley J. Blazer, William E. Caldwell, Richard S. Wagman, Douglas S. Hedrick
  • Patent number: 6546175
    Abstract: A self-supporting fiber optic cable includes a messenger section having at least one strength and anti-buckling member enclosed within a jacket and a carrier section enclosed within a jacket that is joined to the jacket of the messenger section by a web. In a preferred embodiment of the present invention, carrier section does not include strength members and the optical fibers are set with a high EFL. The greater EFL accommodates elongation of carrier section without transmission of stress to optical fibers. In addition, the preferably generally cylindrical internal surface of a tube or jacket curves the optical fibers creating EFL, for example, the fibers are guided by the internal surface in a helical path. Resistance to carrier section elongation and contraction can be controlled by varying the length of the web connecting the carrier and messenger sections.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: April 8, 2003
    Assignee: Corning Cable Systems LLC
    Inventors: Richard S. Wagman, Larry W Field, Michael J. Ott
  • Publication number: 20020197030
    Abstract: A fiber optic cable is provided that includes a plurality of lengthwise extending, non-jacketed bundles of optical fibers and a cable jacket surrounding the bundles of optical fibers. Each bundle of optical fibers may include a binder, such as a binder thread, for maintaining the integrity of the bundle. The binder may include, for example, a binder thread formed of an air entangled, textured, continuous multi-filament thread. The fiber optic cable may also include a separation element for preventing adhesion between the bundles of optical fibers and the cable jacket without having to separately jacket each bundle of optical fibers.
    Type: Application
    Filed: June 25, 2001
    Publication date: December 26, 2002
    Inventors: Warren W. McAlpine, Richard S. Wagman, William C. Hurley, James L. Baucom
  • Publication number: 20020044751
    Abstract: A fiber optic cable having strength assemblies (30) adjacent a tube for imparting crush resistance to the cable, at least one of the strength assemblies including a strength member in contact with a tube having at least one optical fiber therein. The strength member is coupled to a first jacket, and may be surrounded a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. Tight coupling and minimized gaps between the cable components in strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distribute the stress for preventing crush induced attenuation in the optical fibers.
    Type: Application
    Filed: February 2, 2001
    Publication date: April 18, 2002
    Inventors: Eric R. Logan, Richard S. Wagman, Jason C. Lail, Michael J. Gimblet
  • Patent number: 6356690
    Abstract: A self-supporting fiber optic cable includes messenger and carrier sections and at least one interconnecting web. The messenger section includes at least one support member and a protective jacket. The carrier section includes a tube, at least one optical fiber disposed within the tube, and a jacket. In order to protect the optical fiber from tensile forces and to facilitate mid-span access, the carrier section can have an overlength. In order to accommodate the overlength, the web can include a plurality of intermittent webs that permit the carrier section to bend. The carrier section can also include at least one strength member. The at least one strength member is preferably positioned in a reference plane that also generally extends through the messenger section, the carrier section and the web. By appropriately positioning the strength members relative to the tube, the carrier section preferentially bends in a plane generally orthogonally disposed to the reference plane.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: March 12, 2002
    Assignee: Corning Cable Systems LLC
    Inventors: Warren W. McAlpine, Michael J. Gimblet, Richard S. Wagman
  • Patent number: 6259844
    Abstract: A fiber optic cable having strength assemblies (30) adjacent a tube for imparting crush resistance to the cable, at least one of the strength assemblies including a strength member in contact with a tube having at least one optical fiber therein. The strength member is coupled to a first jacket, and may be surrounded a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. Tight coupling and minimized gaps between the cable components in strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distribute the stress for preventing crush induced attenuation in the optical fibers.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: July 10, 2001
    Assignee: Siecor Operations, LLC
    Inventors: Eric R. Logan, Richard S. Wagman, Jason C. Lail, Michael J. Gimblet
  • Patent number: 6101305
    Abstract: A fiber optic cable (10) having a core tube (14) with a stack of optical fiber ribbons (12) therein, a jacket (20), and strength sections (30). Jacket (20) includes a non-uniform profile with close profile sections (22) and extended profile sections (26). Strength sections (30) comprise extended profile sections (26), dielectric strength rods (32), and ripcords (34) disposed between the strength rods. When it is desired to prepare fiber optic cable (10) for a cable pulling operation, portions of extended profile sections (26) are removed thereby exposing strength rods (32) and grip surfaces (22a) for receiving a pulling-grip (40). The compact size, flexibility, and light-weight construction of fiber optic cable (10) makes it a craft-friendly cable which is easy to route through cable passageways during the cable pulling operation.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: August 8, 2000
    Assignee: Siecor Corporation
    Inventors: Richard S. Wagman, Eric R. Logan
  • Patent number: 6014487
    Abstract: A fiber optic cable (10) includes a tube section (20) and an sheath section (40). Between tube and sheath sections (20,40) is a series of general interstices (S), each general interstice (S) comprises a respective set of sub-interstices (S1,S2,S3). Each general interstice (S) comprises a respective interstitial assembly (30). Each interstitial assembly (30) provides crush strength resistance and water blocking features to fiber optic cable (10).
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: January 11, 2000
    Assignee: Siecor Corporation
    Inventors: Larry W. Field, Eric R. Logan, Katharine Newton, Richard S. Wagman
  • Patent number: 5848212
    Abstract: An optical fiber cable having a minimum bend radius and comprising at least one U-shaped carrier helically stranded about a coaxial rod having a central axis and including in its lateral peripheral surface at least one groove, said groove containing at least one optical fiber element, is characterized in that the maximum compressive force on said U-shaped carrier caused by bending the cable to its minimum bend radius is less than the minimum such force which could cause said U-shaped carrier to buckle toward said groove. A cable with 16-fiber ribbons containing 250 .mu.m outer diameter (OD) fibers may contain up to 3200 optical fibers. The cable cross-section packing density may be 2.13 fibers/mm.sup.2.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: December 8, 1998
    Assignee: Siecor Corporation
    Inventor: Richard S. Wagman