Patents by Inventor Richard Shimkets

Richard Shimkets has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918649
    Abstract: Provided herein are PD-L1 binding molecules comprising or conjugated to a toxin, e.g. a Shiga toxin A Subunit derived polypeptide. In some embodiments, the PD-L1 binding molecules are cytotoxic. In some embodiments, the PD-L1 binding molecules are capable of delivering a CD8+ T-cell epitope to an MHC class molecule inside a PD-L1 positive cell. The PD-L1 binding molecules described herein have uses for selectively killing specific cells (e.g., PD-L1 positive tumor cells and/or immune cells); for selectively delivering cargos to specific cells (e.g., PD-L1 positive tumor cells or immune cells), and as therapeutic and/or diagnostic molecules for treating and diagnosing a variety of conditions, including cancers and tumors involving PD-L1 expressing cells (e.g., PD-L1 positive tumor cells or immune cells).
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: March 5, 2024
    Assignee: Molecular Templates, Inc.
    Inventors: Eric Poma, Hilario Ramos, Erin Willert, Richard Shimkets, Crystal Jackson, Thomas Vincent
  • Publication number: 20230313318
    Abstract: Microsatellite markers, and method of use thereof, for differentiating isolates of D. immitis heartworms and/or other parasites. A method of testing new products for drug-susceptible and/or resistant isolates of heartworms using the microsatellite markers disclosed herein.
    Type: Application
    Filed: January 30, 2023
    Publication date: October 5, 2023
    Applicant: TRS Labs Inc
    Inventors: Crystal FRICKS, Ray Kaplan, John W McCall, Richard Shimkets
  • Patent number: 11136395
    Abstract: Provided herein are PD-L1 binding molecules comprising or conjugated to a toxin, e.g. a Shiga toxin A Subunit derived polypeptide. In some embodiments, the PD-L1 binding molecules are cytotoxic. In some embodiments, the PD-L1 binding molecules are capable of delivering a CD8+ T-cell epitope to an MHC class molecule inside a PD-L1 positive cell. The PD-L1 binding molecules described herein have uses for selectively killing specific cells (e.g., PD-L1 positive tumor cells and/or immune cells); for selectively delivering cargos to specific cells (e.g., PD-L1 positive tumor cells or immune cells), and as therapeutic and/or diagnostic molecules for treating and diagnosing a variety of conditions, including cancers and tumors involving PD-L1 expressing cells (e.g., PD-L1 positive tumor cells or immune cells).
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 5, 2021
    Assignee: Molecular Templates, Inc.
    Inventors: Eric Poma, Hilario Ramos, Erin Willert, Richard Shimkets, Crystal Jackson, Thomas Vincent
  • Publication number: 20210079097
    Abstract: Provided herein are PD-L1 binding molecules comprising or conjugated to a toxin, e.g. a Shiga toxin A Subunit derived polypeptide. In some embodiments, the PD-L1 binding molecules are cytotoxic. In some embodiments, the PD-L1 binding molecules are capable of delivering a CD8+ T-cell epitope to an MHC class molecule inside a PD-L1 positive cell. The PD-L1 binding molecules described herein have uses for selectively killing specific cells (e.g., PD-L1 positive tumor cells and/or immune cells); for selectively delivering cargos to specific cells (e.g., PD-L1 positive tumor cells or immune cells), and as therapeutic and/or diagnostic molecules for treating and diagnosing a variety of conditions, including cancers and tumors involving PD-L1 expressing cells (e.g., PD-L1 positive tumor cells or immune cells).
    Type: Application
    Filed: September 18, 2020
    Publication date: March 18, 2021
    Inventors: Eric Poma, Hilario Ramos, Erin Willert, Richard Shimkets, Crystal Jackson, Thomas Vincent
  • Publication number: 20210079098
    Abstract: Provided herein are PD-L1 binding molecules comprising or conjugated to a toxin, e.g. a Shiga toxin A Subunit derived polypeptide. In some embodiments, the PD-L1 binding molecules are cytotoxic. In some embodiments, the PD-L1 binding molecules are capable of delivering a CD8+ T-cell epitope to an MEW class molecule inside a PD-L1 positive cell. The PD-L1 binding molecules described herein have uses for selectively killing specific cells (e.g., PD-L1 positive tumor cells and/or immune cells); for selectively delivering cargos to specific cells (e.g., PD-L1 positive tumor cells or immune cells), and as therapeutic and/or diagnostic molecules for treating and diagnosing a variety of conditions, including cancers and tumors involving PD-L1 expressing cells (e.g., PD-L1 positive tumor cells or immune cells).
    Type: Application
    Filed: September 21, 2020
    Publication date: March 18, 2021
    Inventors: Eric Poma, Hilario Ramos, Erin Willert, Richard Shimkets, Crystal Jackson, Thomas Vincent
  • Publication number: 20080171046
    Abstract: Disclosed herein are novel human nucleic acid sequences which encode polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: May 12, 2004
    Publication date: July 17, 2008
    Inventors: Corine Vermet, Elma Fernandes, Richard Shimkets, John Herrmann, Kumud Majumder, John MacDougall, Vishnu Mishra, Peter S. Mezes, Luca Rastelli
  • Publication number: 20070166756
    Abstract: The invention provides polypeptides, designated herein as SECP polypeptides, as well as polynucleotides encoding SECP polypeptides, and antibodies that immunospecifically-bind to SECP polypeptide or polynucleotide, or derivatives, variants, mutants, or fragments thereof. The invention additionally provides methods in which the SECP polypeptide, polynucleotide, and antibody are used in the detection, prevention, and treatment of a broad range of pathological states.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 19, 2007
    Inventors: Richard Shimkets, Elma Fernandes
  • Publication number: 20070042421
    Abstract: Disclosed are methods for identifying nucleic acids in a sample of nucleic acids in which nucleic acids are initially present in unequal amounts. The methods include partitioning the starting population of nucleic acids to form one or more subpopulations, and then identifying nucleic acids that are present in different amounts in the partitioned nucleic acid sample as compared to the starting population.
    Type: Application
    Filed: November 1, 2006
    Publication date: February 22, 2007
    Inventors: Jonathan Rothberg, Michael McKenna, Paul Predki, Andreas Windemuth, Richard Shimkets
  • Patent number: 7141549
    Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: November 28, 2006
    Inventors: Peter Mezes, Luca Rastelli, John Herrmann, John MacDougall, Haihong Zhong, Stacie Casman, Ferenc Boldog, Richard Shimkets, Linda Gorman, Andrew Eisen, Steven Spaderna, Corine Vernet, Constance Berghs, Kimberly Spytek, Vincent DiPippo, Bryan Zerhusen, John Peyman, Karen Ellerman, David Stone, William Grosse, John Alsobrook, II, Denise Lepley, Daniel Rieger, Catherine Burgess, Shlomit Edinger, Edward Voss, Charles Miller
  • Publication number: 20060257882
    Abstract: This application is drawn to novel nucleic acid sequences encoding mammalian polypeptides that have sequence similarity to human breast tumor-associated protein 47. The nucleic acid sequence is 1987 nucleotides long and contains an open reading frame from nucleotides 991 to 1447. The novel, encoded polypeptides comprise 152 amino acid residues.
    Type: Application
    Filed: April 21, 2005
    Publication date: November 16, 2006
    Inventors: Richard Shimkets, Elma Fernandes, John Herrman, Corine Vernet
  • Publication number: 20060141565
    Abstract: The present invention generally relates to nucleic acids, proteins, and antibodies. The invention relates more particularly to nucleic acid molecules, proteins, and antibodies of Fibroblast Growth Factor-20 (FGF-22), or its fragments, derivatives, variants, homologs, analogs, or a combination thereof.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 29, 2006
    Inventors: Meera Patturajan, Isabelle Millet, Sampath Kumar, Charles Miller, Peter Mezes, Denise Lepley, Catherine Burgess, Richard Shimkets
  • Publication number: 20060111561
    Abstract: Disclosed are novel proteins and nucleic acids encoding same. Also disclosed are vectors, host cells, antibodies and recombinant methods for producing the proteins and polynucleotides, as well as methods for using same.
    Type: Application
    Filed: August 31, 2005
    Publication date: May 25, 2006
    Inventors: Valerie Gerlach, Elma Fernandes, Richard Shimkets, Meera Patturajan, Vladimir Gusev, Stacie Navara, Velizar Tchernev, David Anderson, Xiaojia Guo, Luca Rastelli, Mei Zhong, Muralidhara Padigaru
  • Publication number: 20060094647
    Abstract: The present invention is based upon methods of treating inflammatory conditions in the intestinal tract of mammals using growth factor related polypeptides. Methods of using fibroblast growth factor-CX (FGF-CX) polynucleotide sequences and the FGF-CX polypeptides encoded by such nucleic acid sequences, or variants, fragments and homologs thereof, are claimed in the invention. Similarly, methods of using FCTRX polynucleotide sequences and the FCTRX polypeptides encoded by such nucleic acid sequences, or variants, fragments and homologs thereof, alone or in combination, are also claimed in the invention. FCTRX collectively refers to any of six variant FCTRX sequences, variously designated FCTR1, FCTR2, FCTR3, FCTR4, FCTR5 and FCTR6.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 4, 2006
    Inventors: Michael Jeffers, Richard Shimkets, Sudhirdas Prayaga, Ferenc Boldog, Meijia Yang, Catherine Burgess, Elma Fernandes, Beth Rittman, Juliette Shimkets, William LaRochelle, Henri Lichenstein
  • Publication number: 20060084054
    Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: June 4, 2003
    Publication date: April 20, 2006
    Inventors: John Alsobrook, David Anderson, Jason Baumgartner, Constance Berghs, Ferenc Boldog, Catherine Burgess, Stacie Casman, Elina Catterton, Mohanraj Dhanabal, Shlomit Edinger, Karen Ellerman, Seth Ettenberg, Esha Gangolli, Valerie Gerlach, Linda Gorman, William Grosse, Erik Gunther, Xiaojia Guo, Vladimir Gusev, John Herrmann, Weizhen Ji, Ramesh Kekuda, Nikolai Khramtsov, William LaRochelle, Li Li, Hongping Liang, Kenneth Low, John MacDougall, Timothy Maclachlan, Uriel Malyankar, Kelly McQueeney, Amanda Mezick, Charles Miller, Isabelle Millet, Muralidhara Padigaru, Meera Patturajan, John Peyman, Xiaozhong Qian, Luca Rastelli, Daniel Rieger, Mark Rothenberg, Suresh Shenoy, Richard Shimkets, Glennda Smithson, Kimberly Spytek, David Stone, Sujatha Sukumaran, Edward Szekeres, Corine Vernet, Edward Voss, Adam Wolenc, Mei Zhong, Haihong Zhong
  • Publication number: 20060063200
    Abstract: Disclosed herein are nucleic acid sequences that encode G-coupled protein-receptor related polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: February 2, 2005
    Publication date: March 23, 2006
    Applicant: CuraGen Corporation
    Inventors: David Anderson, Jason Baumgartner, Ferenc Boldog, Stacie Casman, Shlomit Edinger, Esha Gangolli, Valerie Gerlach, Linda Gorman, Xiaojia Guo, Tord Hjalt, Ramesh Kekuda, Li Li, John MacDougall, Uriel Malyankar, Isabelle Millet, Muralidhara Padigaru, Meera Patturajan, Carol Pena, Luca Rastelli, Richard Shimkets, David Stone, Kimberly Spytek, Corine Vernet, Edward Voss, Bryan Zerhusen
  • Publication number: 20060057664
    Abstract: The invention provides polypeptides, designated herein as SECP polypeptides, as well as polynucleotides encoding SECP polypeptides, and antibodies that immunospecifically-bind to SECP polypeptide or polynucleotide, or derivatives, variants, mutants, or fragments thereof. The invention additionally provides methods in which the SECP polypeptide, polynucleotide, and antibody are used in the detection, prevention, and treatment of a broad range of pathological states.
    Type: Application
    Filed: June 2, 2003
    Publication date: March 16, 2006
    Applicant: CuraGen Corporation
    Inventors: Richard Shimkets, Elma Fernandes
  • Publication number: 20060014153
    Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: June 25, 2004
    Publication date: January 19, 2006
    Inventors: Valerie Gerlach, John MacDougall, Glennda Smithson, Isabelle Millet, David Stone, Erik Gunther, Karen Ellerman, William Grosse, John Alsobrook, Denise Lepley, Catherine Burgess, Muralidhara Padigaru, Ramesha Kekuda, Kimberly Spytek, Martin Leach, Richard Shimkets
  • Publication number: 20060013813
    Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: February 8, 2005
    Publication date: January 19, 2006
    Inventors: Peter Mezes, Luca Rastelli, John Herrmann, John MacDougall, Haihong Zhong, Stacie Casman, Frenc Boldog, Richard Shimkets, Linda Gorman, Andrew Eisen, Steven Spaderna, Corine Vernet, Constance Berghs, Kimberly Spytek, Vincent DiPippo, Bryan Zerhusen, John Peyman, Karen Ellerman, David Stone, William Grosse, John Alsobrook, Denise Lepley, Daniel Rieger, Catherine Burgess, Sholmit Edinger, Edward Voss, Charles Miller
  • Publication number: 20060003323
    Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: June 3, 2003
    Publication date: January 5, 2006
    Inventors: John Alsobrook, Enrique Alvarez, David Anderson, Ferenc Boldog, Stacie Casman, Elina Catterton, Andrei Chapoval, Julie Crabtree-Bokor, Shlomit Edinger, Karen Ellerman, Seth Ettenberg, Esha Gangolli, Valerie Gerlach, Linda Gorman, Erik Gunther, Xiaojia (Sasha) Guo, Vladimir Gusev, John Herrmann, Weizhen Ji, Ramesh Kekuda, Li Li, Xiaohong Liu, John MacDougall, Timothy Machlachlan, Uriel Malyankar, Amanda Mezick, Isabelle Millet, Vishnu Mishra, Muralidhara Padigaru, Meera Patturajan, Carol Pena, John Peyman, Debasish Raha, Luca Rastelli, Daniel Rieger, Mark Rothenberg, Paul Sciore, Suresh Shenoy, Richard Shimkets, Glennda Smithson, Kimberly Spytek, David Stone, Corine Vernet, Edward Voss, Mei Zhong, Hiahong Zhong
  • Publication number: 20050287564
    Abstract: Disclosed herein are nucleic acid sequences that encode G-coupled protein-receptor related polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.
    Type: Application
    Filed: May 10, 2005
    Publication date: December 29, 2005
    Inventors: Linda Gorman, Richard Shimkets, Carol Pena, Valerie Gerlach, Kumud Majumder, Sudhirdas Prayaga, Catherine Burgess