Patents by Inventor Richard Stephen Muka

Richard Stephen Muka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8450193
    Abstract: Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for temperature-controlled ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen including: a wafer clamping mechanism to secure the wafer onto the platen and to provide a predetermined thermal contact between the wafer and the platen, and one or more heating elements to pre-heat and maintain the platen in a predetermined temperature range above room temperature. The apparatus may also comprise a post-cooling station to cool down the wafer after ion implantation. The apparatus may further comprise a wafer handling assembly to load the wafer onto the pre-heated platen and to remove the wafer from the platen to the post-cooling station.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: May 28, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald England, Richard Stephen Muka, Edwin A. Arevalo, Ziwei Fang, Vikram Singh
  • Patent number: 7655933
    Abstract: Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for high-temperature ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen having a wafer interface to provide a predetermined thermal contact between the wafer and the platen. The apparatus may also comprise an array of heating elements to heat the wafer while the wafer is held on the platen to achieve a predetermined temperature profile on the wafer during ion implantation, the heating elements being external to the platen. The apparatus may further comprise a post-implant cooling station to cool down the wafer after ion implantation of the wafer.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: February 2, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald England, Richard Stephen Muka, Scott C Holden
  • Patent number: 7528392
    Abstract: Techniques for low-temperature ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for low-temperature ion implantation. The apparatus may comprise a wafer support mechanism to hold a wafer during ion implantation and to facilitate movement of the wafer in at least one dimension. The apparatus may also comprise a cooling mechanism coupled to the wafer support mechanism. The cooling mechanism may comprise a refrigeration unit, a closed loop of rigid pipes to circulate at least one coolant from the refrigeration unit to the wafer support mechanism, and one or more rotary bearings to couple the rigid pipes to accommodate the movement of the wafer in the at least one dimension.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: May 5, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald England, Richard Stephen Muka, D. Jeffrey Lischer
  • Publication number: 20080124903
    Abstract: Techniques for low-temperature ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for low-temperature ion implantation. The apparatus may comprise a wafer support mechanism to hold a wafer during ion implantation and to facilitate movement of the wafer in at least one dimension. The apparatus may also comprise a cooling mechanism coupled to the wafer support mechanism. The cooling mechanism may comprise a refrigeration unit, a closed loop of rigid pipes to circulate at least one coolant from the refrigeration unit to the wafer support mechanism, and one or more rotary bearings to couple the rigid pipes to accommodate the movement of the wafer in the at least one dimension.
    Type: Application
    Filed: April 10, 2007
    Publication date: May 29, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald ENGLAND, Richard Stephen Muka, D. Jeffrey Lischer
  • Publication number: 20080121821
    Abstract: Techniques for low-temperature ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as a wafer support assembly for low-temperature ion implantation. The wafer support assembly may comprise a base. The wafer support assembly may also comprise a platen configured to mount to the base via one or more low-thermal-contact members, wherein the platen has a heat capacity larger than that of a wafer mounted thereon, such that, if pre-chilled to a predetermined temperature, the platen causes the wafer to stay within a range of the predetermined temperature during ion implantation.
    Type: Application
    Filed: April 4, 2007
    Publication date: May 29, 2008
    Applicant: Varian Semiconductor Equipment Associates Inc.
    Inventors: Richard Stephen Muka, Christopher Andreas Rowland, Jonathan Gerald England
  • Publication number: 20080042078
    Abstract: Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for high-temperature ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen having a wafer interface to provide a predetermined thermal contact between the wafer and the platen. The apparatus may also comprise an array of heating elements to heat the wafer while the wafer is held on the platen to achieve a predetermined temperature profile on the wafer during ion implantation, the heating elements being external to the platen. The apparatus may further comprise a post-implant cooling station to cool down the wafer after ion implantation of the wafer.
    Type: Application
    Filed: July 16, 2007
    Publication date: February 21, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald ENGLAND, Richard Stephen Muka, Scott C. Holden
  • Publication number: 20080044257
    Abstract: Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for temperature-controlled ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen including: a wafer clamping mechanism to secure the wafer onto the platen and to provide a predetermined thermal contact between the wafer and the platen, and one or more heating elements to pre-heat and maintain the platen in a predetermined temperature range above room temperature. The apparatus may also comprise a post-cooling station to cool down the wafer after ion implantation. The apparatus may further comprise a wafer handling assembly to load the wafer onto the pre-heated platen and to remove the wafer from the platen to the post-cooling station.
    Type: Application
    Filed: June 28, 2007
    Publication date: February 21, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jonathan Gerald ENGLAND, Richard Stephen Muka, Edwin A. Arevalo, Ziwei Fang, Vikram Singh
  • Patent number: 4070015
    Abstract: Sheet feeding apparatus including a direct acting vacuum control value for an oscillating vacuum feeder. The control valve includes a valve shoe normally biased to a position to cover a vent port in the housing of the oscillating vacuum feeder. An appropriate linkage, interconnected to the shoe, is actuated to uncover the vent port for at least a portion of the oscillation cycle of the oscillating vacuum feeder, whereby the vacuum within the oscillating vacuum feeder is vented to release pneumatic forces on the sheets during at least the return portion of the oscillation cycle.
    Type: Grant
    Filed: October 26, 1976
    Date of Patent: January 24, 1978
    Assignee: Eastman Kodak Company
    Inventor: Richard Stephen Muka