Patents by Inventor Richard Stevenson

Richard Stevenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200092260
    Abstract: A management request is received by a system for carrying out one or more data management operations (including, but not limited to, adding data, merging data or searching for data). The management request is received from a requesting entity. The system comprises a representation database, which comprises at least one secure element. The at least one secure element is a representation of at least one dataset containing confidential data elements stored in at least one database owned or operated by a third party entity. The management request is processed by performing at least one operation, for example by a processing component in the system, on the representation database. In a third step, a processing result is provided, which comprises any suitable information or data content. The processing result is dependent on the contents of the management request.
    Type: Application
    Filed: March 12, 2018
    Publication date: March 19, 2020
    Inventors: William Johnston BUCHANAN, Owen Chin Wai LO, Philip PENROSE, Richard MACFARLANE, Ian STEVENSON, Bruce RAMSAY
  • Patent number: 10589107
    Abstract: A feedthrough separates a body fluid side from a device side. A passageway is disposed through the feedthrough. A body fluid side leadwire extends from a first end disposed inside the passageway to a second end on the body fluid side. A device side leadwire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side leadwire is hermetically sealed to the feedthrough body and is not of the same material as the device side leadwire. A circuit board has an active via hole with a second end of the second leadwire residing therein. The circuit board has an active circuit trace that is electrically connectable to electronic circuits housed in an AIMD, and a circuit board ground metallization.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 17, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Publication number: 20200054881
    Abstract: A hermetically sealed filtered feedthrough for an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first leadwire second end extending outwardly beyond the device side of an insulator hermetically sealed to a ferrule for the feedthrough. A circuit board supporting a chip capacitor is disposed adjacent to a device side of the insulator and has a circuit board passageway. The first leadwire first end resides in the circuit board passageway. A second conductive leadwire on the device side has a second leadwire first end disposed in the circuit board passageway with a second leadwire second end extending outwardly beyond the circuit board to be connectable to AIMD internal electronics. The second leadwire first end is connected to the first leadwire first end and a capacitor internal metallization in the circuit board passageway.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 20, 2020
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Patent number: 10559409
    Abstract: A method for manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of first forming a ceramic reinforced metal composite (CRMC) paste by mixing platinum with a ceramic material to form a CRMC material, subjecting the CRMC material to a first sintering step to thereby form a sintered CRMC material, ball-milling or grinding the sintered CRMC material to form a powdered CRMC material; and then mixing the powdered CRMC material with a solvent to form the CRMC paste.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: February 11, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Patent number: 10500402
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: December 10, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20190321628
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active metallization that is electrically connected to the active electrode plates and a ground metallization that is electrically connected to the ground electrode plates of the capacitor. A ground electrical path extends from the ground metallization of the chip capacitor to the ferrule. A conductive ground pin is electrically and mechanically connected to the ferrule. The ground path comprises an internal ground plate disposed within the circuit board substrate.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 24, 2019
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10449375
    Abstract: A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 22, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Publication number: 20190308013
    Abstract: A feedthrough terminal assembly for active implantable medical devices includes an electrically conductive pad for a convenient attachment of wires from either the circuitry inside the implantable medical device or wires external to the device. The electrically conductive pad enables direct thermal or ultrasonic bonding of a circuit board or lead wire to the terminal pin.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 10, 2019
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20190290275
    Abstract: A staple cartridge for use with a surgical stapling apparatus includes a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots, a staple disposed within each staple retaining slot of the cartridge body, and a substantially circular buttress. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion. At least one stiffened region joins the buttress to the tissue contacting surface of the cartridge body. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Sally Carter, Gerald Hodgkinson, Richard Stevenson, Arthur Hislop, Ernest Aranyi, Jennifer (Whiffen) Diederich
  • Publication number: 20190290280
    Abstract: An end effector for use with a surgical apparatus. The end effector comprising a staple cartridge having a tissue contacting surface defining a central longitudinal slot and an anvil plate having a tissue contacting surface defining a central longitudinal slot. A folded surgical buttress configured to overlie each of the tissue contacting surfaces of the staple cartridge and anvil plate and configured to retain the surgical buttress to the tissue contacting surfaces of each of the staple cartridge and anvil plate. The surgical buttress having a first longitudinal portion, a second longitudinal portion, and middle longitudinal portion between the first and second longitudinal portions, wherein the middle longitudinal portion is folded and configured to fit within the central longitudinal slot of each of the staple cartridge and anvil plate.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Richard Stevenson, Paul Scirica
  • Publication number: 20190240482
    Abstract: A three-terminal flat-through EMI/energy dissipating filter comprises an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. Both the effective capacitance area or overlapping surface area of the active electrode plate and the surrounding ground shield plates and the dielectric constant of the insulating layers between the active electrode plate and the ground shield plates is raised to achieve a higher capacitance value for the three-terminal flat-through capacitor.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Publication number: 20190244729
    Abstract: A method for manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of first forming a ceramic reinforced metal composite (CRMC) paste by mixing platinum with a ceramic material to form a CRMC material, subjecting the CRMC material to a first sintering step to thereby form a sintered CRMC material, ball-milling or grinding the sintered CRMC material to form a powdered CRMC material; and then mixing the powdered CRMC material with a solvent to form the CRMC paste.
    Type: Application
    Filed: March 25, 2019
    Publication date: August 8, 2019
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Publication number: 20190233543
    Abstract: The present invention concerns a method for preparing antigen binding proteins with reduced viscosity. The method proceeds by replacing residues in high viscosity variable domain subfamilies with residues in correlating low viscosity subfamilies. The method further comprises substituting residues in the Fc domain with residues associated with low viscosity and adding charged residues to the C-terminus of the Fc domain. The present invention further concerns antigen binding proteins produced by this method.
    Type: Application
    Filed: September 28, 2017
    Publication date: August 1, 2019
    Applicant: AMGEN INC.
    Inventors: Neeraj Jagdish AGRAWAL, Pavel BONDARENKO, Joon Hoi HUH, Andrew NICHOLS, Da REN, Richard SMITH, Riki STEVENSON
  • Patent number: 10357249
    Abstract: A staple cartridge for use with a surgical stapling apparatus includes a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots, a staple disposed within each staple retaining slot of the cartridge body, and a substantially circular buttress. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion. At least one stiffened region joins the buttress to the tissue contacting surface of the cartridge body. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: July 23, 2019
    Assignee: Covidien LP
    Inventors: Sally Carter, Gerald Hodgkinson, Richard Stevenson, Arthur Hislop, Ernest Aranyi, Jennifer (Whiffen) Diederich
  • Publication number: 20190217086
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10349942
    Abstract: An end effector for use with a surgical apparatus. The end effector comprising a staple cartridge having a tissue contacting surface defining a central longitudinal slot and an anvil plate having a tissue contacting surface defining a central longitudinal slot. A folded surgical buttress configured to overlie each of the tissue contacting surfaces of the staple cartridge and anvil plate and configured to retain the surgical buttress to the tissue contacting surfaces of each of the staple cartridge and anvil plate. The surgical buttress having a first longitudinal portion, a second longitudinal portion, and middle longitudinal portion between the first and second longitudinal portions, wherein the middle longitudinal portion is folded and configured to fit within the central longitudinal slot of each of the staple cartridge and anvil plate.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: July 16, 2019
    Assignee: Covidien LP
    Inventors: Richard Stevenson, Paul Scirica
  • Publication number: 20190192862
    Abstract: A feedthrough separates a body fluid side from a device side. A passageway is disposed through the feedthrough. A body fluid side leadwire extends from a first end disposed inside the passageway to a second end on the body fluid side. A device side leadwire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side leadwire is hermetically sealed to the feedthrough body and is not of the same material as the device side leadwire. A circuit board has an active via hole with a second end of the second leadwire residing therein. The circuit board has an active circuit trace that is electrically connectable to electronic circuits housed in an AIMD, and a circuit board ground metallization.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Patent number: 10321908
    Abstract: An apparatus for joining two hollow organ sections with an annular array of surgical staples includes a staple cartridge component, an anvil component, a buttress component and a fastening member. The staple cartridge component includes a plurality of surgical staples arranged in an annular array. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The buttress component is configured and dimensioned to be positioned on a distal surface of the staple cartridge component. In particular, the buttress component includes a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member. The fastening member is configured and dimensioned to engage the plurality of circumferentially arranged tabs to securely position the buttress component on the staple cartridge component.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: June 18, 2019
    Assignee: Covidien LP
    Inventors: Sally Carter, Richard Stevenson
  • Publication number: 20180168654
    Abstract: A surgical stapling instrument includes a staple cartridge assembly having a plurality of rows of staple receiving slots and an anvil assembly having a plurality of rows of staple forming recesses. The staple cartridge assembly, the anvil assembly, or both have one or more attachment members overmolded thereon. A staple line reinforcement material is attached to the attachment members.
    Type: Application
    Filed: February 14, 2018
    Publication date: June 21, 2018
    Inventors: Gerald N. Hodgkinson, Richard Stevenson, Jennifer (Whiffen) Diederich
  • Patent number: RE47624
    Abstract: A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 1, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Robert A. Stevenson, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominck J. Frustaci, Steven W. Winn