Patents by Inventor Richard Stuart Seger, JR.

Richard Stuart Seger, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143801
    Abstract: A method for execution by a vehicle computing system includes establishing a screen-to-screen (STS) communication link with a personal computing device. The method further includes detecting a requested operation of the personal computing device. The method further includes determining whether the requested operation is allowed based on one or more of: operational status of the vehicle, a type of the requested operation, and targeted vehicle occupant. The method further includes, when the requested operation is allowed, establishing one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals. The method further includes facilitating the requested operation via the one or more of: the one or more inbound STS channels and the one or more outbound STS channels.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Publication number: 20240146836
    Abstract: A method for execution by a personal computing device includes detecting an incoming operation. The method further includes transmitting a notice of the incoming operation to a vehicle computing device via a screen-to-screen (STS) communication link. The method further includes receiving an accept message via the STS communication link from the vehicle computing device. The method further includes facilitating the incoming operation via one or more of: one or more inbound STS channels for inbound STS signals and one or more outbound STS channels for outbound STS signals.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Michael Shawn Gray, Daniel Keith Van Ostrand, Timothy W. Markison
  • Patent number: 11971703
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971762
    Abstract: A power supply signal conditioning system includes a power supply, one or more loads, and a drive-sense circuit (DSC). The power supply is operably coupled to one or more loads. When enabled, the power supply configured to output a power supply signal having a DC (direct current) voltage component and a ripple voltage component that is based on conversion of an AC (alternating current) signal in accordance with generating the power supply signal. The DSC is operably coupled to the power supply. When enabled, the DSC is configured simultaneously to sense the power supply signal and, based on sensing of the power supply signal, adaptively to process the power supply signal in accordance with reducing or eliminating the ripple voltage component of the power supply signal to generate a conditioned power supply signal to service the one or more loads.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971761
    Abstract: A power supply signal conditioning system includes a power supply, one or more loads, and a drive-sense circuit (DSC). The power supply is operably coupled to one or more loads. When enabled, the power supply configured to output a power supply signal having a DC (direct current) voltage component and a ripple voltage component that is based on conversion of an AC (alternating current) signal in accordance with generating the power supply signal. The DSC is operably coupled to the power supply. When enabled, the DSC is configured simultaneously to sense the power supply signal and, based on sensing of the power supply signal, adaptively to process the power supply signal in accordance with reducing or eliminating the ripple voltage component of the power supply signal to generate a conditioned power supply signal to service the one or more loads.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: April 30, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11971704
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: April 30, 2024
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11966548
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 23, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Patent number: 11953564
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11953563
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954321
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11954057
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 9, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11947746
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: April 2, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11947761
    Abstract: An encoded data pattern touchscreen sensing computing device includes a touchscreen, a plurality of electrodes, a plurality of drive-sense circuits, and a processing module. When enabled and in close proximity to an encoded data pattern, the plurality of drive-sense circuits detect changes in electrical characteristics of the plurality of electrodes caused by one or more electrical materials of the encoded data pattern. The encoded data pattern includes one or more electrical materials arranged in a pattern. Electrical properties of the one or more electrical materials and the pattern are representative of data. The processing module is operable to receive a set of detected changes in electrical characteristics of the set of drive-sense circuits, interpret the detected changes in electrical characteristics as a set of impedance values representative of the one or more electrical materials of the encoded data pattern, and interpret the set of impedance values to determine the data.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Daniel Keith Van Ostrand, Gerald Dale Morrison, Richard Stuart Seger, Jr., Timothy W. Markison, Patricia Markison Healy
  • Patent number: 11947381
    Abstract: A data formatting module of a low voltage drive circuit (LVDC) includes a sample and hold circuit, an interpreter, a first buffer, a digital to digital converter circuit, and a data packeting circuit. The sample and hold circuit is operable to sample and hold an n-bit digital value of filtered digital data to produce an n-bit sampled digital data value. The interpreter is operable to convert the n-bit sampled digital data value into interpreted n-bit sampled digital data. The interpreter is operable to write the interpreted n-bit sampled digital data into the first buffer in accordance with a write clock until a digital word is formed. The digital to digital converter circuit is operable to format the digital word to produce a formatted digital word. The data packeting circuit is operable to generate a data packet from the formatted digital word and output the data packet as received digital data.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 2, 2024
    Assignee: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20240103652
    Abstract: A touch screen display includes a plurality of electrodes configured to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component, a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes to generate a plurality of sensed signals, and a processing module. The processing module is configured to cause the touch screen display to receive the plurality of sensed signals. A stream of capacitance image data associated with the plurality of cross points is generated based on the plurality of sensed signals. The stream of capacitance image data is processed to detect a touchless gesture.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
  • Publication number: 20240103664
    Abstract: A current reference operative drive-sense circuit (DSC) includes a current source operably coupled to a load and a voltage-mode analog to digital converter (ADC). When enabled, the current source is configured to drive a sinusoidal current reference signal to the load thereby generating a load voltage that is based on the sinusoidal current reference signal and an impedance of the load. The voltage-mode ADC is operably coupled the load and to the current source. When enabled, the voltage-mode ADC configured to perform digital sampling of the load voltage and to generate a digital signal that is representative of the load voltage. In some implementations, one or more processing modules is configured to execute operational instructions to process the digital signal that is representative of the load voltage in accordance with determining impedance of the load and/or change of impedance of the load.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Phuong Huynh
  • Publication number: 20240103672
    Abstract: A capacitive touch screen display operates by: providing a display configured to render frames of data into visible images; providing a plurality of electrodes integrated into the display to facilitate touch sense functionality based on electrode signals having a drive signal component and a receive signal component; generating, via a plurality of drive-sense circuits coupled to at least some of the plurality of electrodes, a plurality of sensed signals; receiving the plurality of sensed signals; generating capacitance image data associated with the plurality of cross points that includes capacitance variation data corresponding to variations of the capacitance image data from a nominal value; and processing the capacitance image data to determine a touchless indication proximal to the touch screen display based on a touchless indication threshold.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Michael Shawn Gray, Patrick Troy Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Timothy W. Markison
  • Patent number: 11940504
    Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: March 26, 2024
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20240094854
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with a region of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC and other digital signals generated by other DSCs determine the region of the surface of the TSD that is associated with the overlay and to adapt sensitivity of the TSD within that region.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Kevin Joseph Derichs, Shayne X. Short, Timothy W. Markison
  • Publication number: 20240095203
    Abstract: A low voltage drive circuit (LVDC) includes a digital to analog input circuit to convert transmit digital data into combined analog outbound data, the transmit digital data has a data rate based on a host input clock, and a first portion of the combined analog outbound data has a first oscillation rate based on a first transmit channel clock and a second portion has a second oscillation rate based on a second transmit channel clock. The LVDC also includes a drive sense circuit to convert the combined analog outbound data into an analog transmit signal that is transmitted on a bus. The LVDC also includes a clock circuit to generate a transmit input clock to synchronize receiving the transmit digital data from a host, generate the first transmit channel clock based on the host input clock, and generate the second transmit channel clock based on the host input clock.
    Type: Application
    Filed: April 26, 2023
    Publication date: March 21, 2024
    Applicant: SigmaSense, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison