Patents by Inventor Richard Swift

Richard Swift has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8751453
    Abstract: Various methods and systems for using email to convey backup and restore data are disclosed. One method involves: receiving a request to perform a backup system operation; generating an email that includes data and metadata (which is associated with the data); and sending the email to an email address associated with a backup system component. The request can be a backup request, in which case the data includes data to be backed up, and the backup system component is a backup server. Alternatively, the request can be receiving a restore request. In this scenario, the data includes data to be restored, and the backup system component is a backup client.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: June 10, 2014
    Assignee: Symantec Operations Corporation
    Inventors: Ajit Vishnu Dhumale, Mukul Kumar, John Richard Swift, Atul Avinash Nene, Anand Gopinath Das
  • Patent number: 8740966
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 3, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Patent number: 8574284
    Abstract: A stent graft for use in a medical procedure to treat a dissection of a patient's ascending thoracic aorta. The stent graft includes bare alignment stents at least at a proximal end, and often with a stent at both ends, each stent having opposing sets of curved apices, where the curved section of one broader set of apices has a radius of curvature that is greater than the curved section of the other narrower set of apices. The proximal stent is flared in a manner such that its broad apices occupy a larger circumference around the stent than do its narrower apices, where this flared feature provides for anchoring engagement near the aortic root in a manner not interfering with the coronary arteries or the aortic valve.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 5, 2013
    Assignee: Cook Medical Technologies LLC
    Inventors: Blayne A. Roeder, Jarin Kratzberg, William K. Dierking, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Mogelvang Jensen, David Brocker, Alan R. Leewood, Timothy A. Chuter, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20130138202
    Abstract: A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.
    Type: Application
    Filed: February 7, 2013
    Publication date: May 30, 2013
    Inventors: Ram H. Paul, Richard A. Swift, Oliver Bach, Ralf Steiner, Angela R. Barnett, Keith R. Milner
  • Publication number: 20130122248
    Abstract: An endoluminal prosthesis and systems and methods for making the prosthesis are provided. In one example, a patterned graft material for a prosthesis includes a network of electrospun fibers. The network of electrospun fibers may include a plurality of continuous electrospun fibers. The fibers may be collected on a collector plate using an electrospinning process to form the network of fibers. The patterned graft material also may include a plurality of openings in the network of electrospun fibers. The plurality of openings may be arranged in a pattern. The network of electrospun fibers may include a plurality of edges, each surrounding a corresponding one of the plurality of openings. Each of the plurality of edges may include at least one electrospun fiber of the network of electrospun fibers. A majority of the electrospun fibers of the plurality of edges may be continuous at the edges.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: Cook Medical Technologies LLC
    Inventors: Kenneth A. Haselby, Keith R. Milner, Sara M. Sherman, Seoggwan Kim, Richard A. Swift
  • Publication number: 20130079866
    Abstract: A stent structure is provided with an alternating arrangement of hoop cells and flex cells. Longitudinal struts extend through the hoop cells but do not extend through the flex cells. The flex struts in the flex cells are wider than the hoop struts in the hoop cells.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Inventors: Nathaniel A. Irwin, Chase B. Wooley, Scott E. Boatman, Seoggwan Kim, Richard A. Swift, Jürgen Tuschka, Daniel Kellerer, Thomas Knobloch
  • Publication number: 20130073052
    Abstract: A stent (30) is provided with an improved structural member (38) at the end (34) of the stent structure (32) to minimize deformation of the stent structure when pushing forces are applied to the end of the stent. The improved structural member is wider than other structural members (40, 42, 44, 46, 48) in the stent structure. The improved structural member is better able to distribute pushing forces to the other structural members in the stent structure with minimal deformation.
    Type: Application
    Filed: February 17, 2011
    Publication date: March 21, 2013
    Applicants: Med Institute, Cook Medical Technologies LLC
    Inventors: Seoggwan Kim, Richard A. Swift
  • Publication number: 20120035708
    Abstract: A perfusion device and a delivery system for repair of a damaged portion of a body vessel. Perfusion device can include a tubular body that is self-expandable, having a proximal portion, a distal portion, and an intermediate portion. One or more series of barbs can be disposed circumferentially along the intermediate portion. Barbs are capable of penetrating into the tunica intima and tunica media of said vessel wall upon insertion of said device into said body vessel, and not into said tunica adventitia. A graft can be associated with the tubular body. Graft has a proximal end and a distal end, and preferably extends entirely along a luminal wall of the tubular body. Graft may also extend along an exterior surface of the tubular body at the proximal and distal portions. A remodelable covering can be applied along the intermediate portion. Delivery devices for the perfusion implant and methods of delivering the perfusion implant are also provided.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Applicant: Cook Medical Technologies, LLC
    Inventors: Ram H. Paul, JR., Richard A. Swift, Oliver Bach, Ralf Steiner
  • Publication number: 20120022638
    Abstract: A barb for anchoring an implantable medical device to a body vessel comprises a thin-walled body portion for engagement with a structural element of an implantable medical device and a penetrating element extending from the body portion. The body portion has a longitudinal axis. The penetrating element includes a tip portion for anchoring into tissue and a base portion between the tip portion and the body portion. In a deployed configuration of the barb, the base portion curves away from the longitudinal axis at a first curvature and the tip portion curves toward the longitudinal axis at a second curvature which is opposite in sign from the first.
    Type: Application
    Filed: December 14, 2009
    Publication date: January 26, 2012
    Inventors: Alan R. Leewood, Shuo Yang, William K. Dierking, Richard A. Swift
  • Patent number: 8060473
    Abstract: Various methods and systems for using email to convey backup and restore data are disclosed. One method involves: receiving a request to perform a backup system operation; generating an email that includes data and metadata (which is associated with the data); and sending the email to an email address associated with a backup system component. The request can be a backup request, in which case the data includes data to be backed up, and the backup system component is a backup server. Alternatively, the request can be receiving a restore request. In this scenario, the data includes data to be restored, and the backup system component is a backup client.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: November 15, 2011
    Assignee: Symantec Operating Corporation
    Inventors: Ajit Vishnu Dhumale, Mukul Kumar, John Richard Swift, Atul Avinash Nene, Anand Gopinath Das
  • Publication number: 20110125244
    Abstract: A stent graft (40) for treating Type-A dissections in the ascending aorta (22) is provided with a plurality of diameter-reducing suture loops (56-60) operable to constrain the stent graft during deployment thereof in a patient's aorta. The diameter-reducing loops (56-60) allow the stent graft (40) to be partially deployed, in such a manner that its location can be precisely adjusted in the patient's lumen. In this manner, the stent graft can be placed just by the coronary arteries (26, 28) with confidence that these will not be blocked. The stent graft (40) is also provided with proximal and distal bare stents (44,52) for anchoring purposes.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 26, 2011
    Inventors: Blayne A. Roeder, Jarin Kratzberg, William K. Dierking, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Publication number: 20110118821
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Application
    Filed: October 14, 2010
    Publication date: May 19, 2011
    Applicants: Cook Incorporated, MED Institute, Inc.
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20100292778
    Abstract: An expandable stent for use in a body vessel comprises a thin-walled tubular framework including two or more circumferentially adjacent end members extending in a longitudinal direction from an end of the framework. In a delivery configuration of the tubular framework, the end members have an interlocking configuration. Each end member has a first interlocking side and a second interlocking side, where the first interlocking side has a circumferentially directed protrusion and the second interlocking side has a circumferentially directed recess. The protrusion of a first end member mates with the recess of a second end member. In an expanded configuration of the tubular framework, the end members are disengaged from the interlocking configuration. Each end member may be an eyelet including an opening for a radiopaque rivet. A method of preparing the expandable stent for delivery into a body vessel is also described.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Applicant: MED Institute, Inc.
    Inventors: Blayne A. Roeder, Seoggwan Kim, Richard A. Swift
  • Publication number: 20100256736
    Abstract: A balloon expandable covered stent consists of a plurality of primary stent units, each having an undulating shape defined by a series of primary strut members converging to form peaks and valleys. The primary stent units are assembled into a single cylindrical structure of the stent by connecting corresponding peaks with secondary strut members. Generally, surfaces of the stent may then coated with a polymeric, hyper-elastic material, preferably Thoralon®, by pre-expanding the stent prior to coating.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 7, 2010
    Inventors: JAMES D. PURDY, Richard A. Swift, Blayne A. Roeder, Alan R. Leewood, Jichao Sun
  • Publication number: 20100161026
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: November 19, 2009
    Publication date: June 24, 2010
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlesbois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Publication number: 20090171437
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: December 11, 2008
    Publication date: July 2, 2009
    Applicants: Cook Incorporated, MED Institute, Inc.
    Inventors: David Brocker, William K. Dierking, Alan R. Leewod, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20080195193
    Abstract: A balloon expandable covered stent consists of a plurality of primary stent units, each having an undulating shape defined by a series of primary strut members converging to form peaks and valleys. The primary stent units are assembled into a single cylindrical structure of the stent by connecting corresponding peaks with secondary strut members. Generally, surfaces of the stent may then coated with a polymeric, hyper-elastic material, preferably Thoralon®, by pre-expanding the stent prior to coating.
    Type: Application
    Filed: January 30, 2008
    Publication date: August 14, 2008
    Applicant: Cook Incorporated
    Inventors: James D. Purdy, Richard A. Swift, Blayne A. Roeder, Alan R. Leewood, Jichao Sun
  • Publication number: 20070185560
    Abstract: An expandable stent for medical implantation is described which has a generally cylindrical structure with a central longitudinal axis. At least a portion of the generally cylindrical structure is formed from an arrangement of circumferentially curved structural members. The portion expands from a compressed state to an expanded state by a spiraling motion of each of the structural members about the central longitudinal axis. In the compressed state, each of the structural members may nest within an open region formed by segments composing the structural member, such that the portion of the generally cylindrical structure has no overlapping regions. A ratio of a circumferential length of each structural member to a spacing between adjacent structural members may be in the range of about 1.8 to about 2.3.
    Type: Application
    Filed: November 27, 2006
    Publication date: August 9, 2007
    Applicant: Cook Incorporated
    Inventors: Blayne Roeder, Richard Swift, David Grewe
  • Patent number: 6779252
    Abstract: The present invention provides an assembly apparatus employing at least a robotic or automated assembly apparatus to manipulate the components to be assembled and at least a first vision alignment system to align the components prior to their assembly. An adhesive dispense system is provided to connect, attach or otherwise adhere the components together. In a method in accord with the present invention for assembling components, a source of the components is provided is located relative to a global reference system. The components held by the source are then located relative to the global reference system based upon the determined location of the source. An adhesive is dispensed onto a first of the components and a second component is manipulated into an initial attachment position relative to the first component.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: August 24, 2004
    Assignee: Applied Kinetics, Inc.
    Inventors: Joseph Patrick Tracy, Mark T. Girard, Ryan A. Jurgenson, Roger Rhea Livermore, David Richard Swift
  • Patent number: D484207
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: December 23, 2003
    Inventor: Richard Swift